www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRegelfunktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Regelfunktionen
Regelfunktionen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:58 Do 19.05.2011
Autor: Theoretix

Aufgabe
Die Funktion [mm] f:[-1,1]\to\IR [/mm] sei für [mm] x\in[-1,1] [/mm] definiert durch

[mm] f(x):=\begin{cases} \frac{1}{n+2}, & \mbox{für } x\in[-\frac{1}{n},-\frac{1}{n+1}) \cup (\frac{1}{n+1},\frac{1}{n}], n\in\IN \mbox{} \\ 0, & \mbox{für } x=0 \mbox{ } \end{cases} [/mm]

Zeigen Sie, dass f eine Regelfunktion ist, indem Sie eine gegen f konvergierende Folge von Treppenfunktionen angeben.

Hallo zusammen,

Ich habe die Funktion f doch so definiert, dass sie für x=0 Null ist und sonst links und rechts von Null zwei Folgen habe, die gegen 0 konvergieren ? [mm] (-\frac{1}{n},-\frac{1}{n+1} [/mm] von links und [mm] \frac{1}{n+1}, \frac{1}{n} [/mm] von rechts).

Jetzt soll ich irgendwie eine Folge von Treppenfunktionen angeben, die gegen diese Funktion konvergiert, das bedeutet doch, es muss für meine Folge von Treppenfunktionen [mm] (\varphi_n)_{n\in\IN} [/mm] gelten:

[mm] \limes_{n\rightarrow\infty}\vert f-\varphi_n\vert=0, [/mm]

aber mich verwirtt die Definiion der Funktion ein wenig, denn diese ist doch schon über Folgen definiert? Wie kann ich jetzt eine Folge von Treppenfunktionen angeben, die gegen f konvergieren?

Wäre dankbar für Hilfe!

Grüße

        
Bezug
Regelfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Do 19.05.2011
Autor: Rauchzart

Hi,
die Funktion ist nicht über Folgen definiert, sondern jeweils in den Intervallen  [mm] [-\frac{1}{n},-\frac{1}{n+1} [/mm] ) [mm] \cup (\frac{1}{n+1}, \frac{1}{n}] [/mm] konstant mit einem von n abhängigen Wert, hat also unendlich viele Stufen.
Du musst eine Folge finden, die nur endlich Stufen hat und in der Supremumsnorm konvergiert. Am besten durch geschickte Abschneiden.

Bezug
                
Bezug
Regelfunktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:21 Do 19.05.2011
Autor: Theoretix

Danke für die Antwort!

Kann ich als Treppenfunktion nicht einfach „dieselbe Funktion“ nehmen, nur dass ich n eben nicht beliebig wähle, sondern beschränke durch [mm] n\in[1,...,k] [/mm] ?

Aber wie kann ich dann konkret zeigen, dass diese Funktionenfolge (der Treppenfunktionen) in der Supremumsnorm gegen f konvergiert?

Gruß

Bezug
                        
Bezug
Regelfunktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 21.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]