www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikRegressionsgerade falsch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Regressionsgerade falsch
Regressionsgerade falsch < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regressionsgerade falsch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Sa 16.10.2010
Autor: NightmareVirus

Aufgabe
Für eine Produktionsanlage soll ein lineares Kostenmodell aufgrund der Daten aus vergangenen Perioden angepasst werden. Diese Daten bestehen aus produzierten Mengen [mm]x_i[/mm] (in
1000 Stück) und entstandenen Kosten [mm]y_i[/mm] (in 1000 Euro), $i = 1, [mm] \ldots [/mm] , 6, in sechs Perioden:

[mm]\begin {array}{c|cccccc} \text{Menge }x_i&7&9&6&11&8&7\\ \text{Kosten } y_i&16.5&22&15&24.5&19&17\end {array} [/mm]

Schätzen Sie die Regressionsgerade [mm]f(x) = a+bx[/mm], und berechnen Sie das Bestimmtheitsmaß.




Ich habe die Aufgabe nach der Methode der kleinsten Quadrate bearbeitet. Leider ist jedoch meine Regressionsgerade falsch, denn 1. ist mein Bestimmtheitsmaß anschließend >1 und zweitens stimmt meine Gerade überhaupt nicht mit der überein die z.b. das Statistikprogramm R zeichnet.

Da ich meinen Fehler aber nicht finden kann hoffe ich dass einer von euch ihn findet:

Nach der Methode der kleinsten Quadrate sind die Koeffizienten der Regressiongerade [mm]f(x) = a + bx[/mm] gegeben durch

[mm]a = \overline{y}-b\overline{x}[/mm] und [mm]b = \frac{\frac{1}{n}\sum_{i=1}^{6}{x_iy_i-\overline{x}\cdot\overline{y}}}{\frac{1}{n}\sum_{i=1}^{6}{x_i^2-\overline{x}^2}}[/mm]

und es ist

[mm]\overline{x}=8[/mm]
[mm]\overline{y}=19[/mm]
[mm]\overline{x}^2=64[/mm]
[mm]\overline{x}\cdot \overline{y}= 152[/mm]

Damit berechnen sich die Koeefizienten übert den Zwischenschritt
[mm]\begin {array}{c|cccccc} x_iy_i-\overline{x}\overline{y}&-36.5&46&-62&117,5&0&-33\\ x_i^2-\overline{x}^2&-15&17&-28&57&0&-15\end {array}[/mm]

Die erste Zeile aufsummiert ergibt 32
Die zweite Zeile ausfummiert ergibt 11
Also ist
[mm]b=\frac{32}{11}[/mm]
und [mm]a=19-\frac{32}{11}\cdot8 = -4\frac{3}{11}[/mm]

D.h. die gescuhte Regressionsgerade ist

[mm]f(x) = -4\frac{3}{11}+\frac{32}{11}x\;,\quad x\in\mathbb{R}[/mm]

(Ich wollte eigentlich ncoh ein Bild einfügen, wo meine Gerade, die Gerade die R zeichnen sowie die Punkte eingezeichnet sind, aber einen Bildupload/Anhang Button finde ich nicht(mehr)).

ich hoffe jemand kann da mal nachgucken wo mein Fehler ist.

        
Bezug
Regressionsgerade falsch: Formel falsch interpretiert
Status: (Antwort) fertig Status 
Datum: 17:38 Sa 16.10.2010
Autor: moudi

Lieber NightmareVirus

Du hast die Formeln falsch interpretiert. Es gilt

[mm] $b=\frac{\frac1n\left(\sum\limits_ix_iy_i\right)-\bar x\bar y}{\frac1n\left(\sum\limits_ix_i^2\right)-\bar x^2}$. [/mm]

Du hast aber folgendes ausgerechnet (beachte die Klammerung)

[mm] $b=\frac{\frac1n\sum\limits_i(x_iy_i-\bar x\bar y)}{\frac1n\sum\limits_i(x_i^2-\bar x^2)}$, [/mm]

was nicht dasselbe ist.

mfG Moudi



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]