www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieRegular Curves
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Regular Curves
Regular Curves < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regular Curves: Aufgabe
Status: (Frage) überfällig Status 
Datum: 10:13 Di 24.04.2012
Autor: nureinmal

Aufgabe
Let [mm] $\gamma$ [/mm] be a regular curve in [mm] $\IR^3$ [/mm] parametrized by arc-length. If it is in a sphere with radius r and its tortion [mm] $\tau$ [/mm]  is never zero, show its curvature [mm] $\kappa$ [/mm] and torsion [mm] $\tau$ [/mm] satisfy the following equation.

[mm] $$(1/\kappa)^2 [/mm] + [mm] ((\kappa [/mm] ') / [mm] \kappa^2 \tau)^2 [/mm] = [mm] r^2$$ [/mm]

Hint: the position vector of the curve from the center of the sphere can be written as a linear combination of Frenet frame.

Hallo, ich versuche mich gerade an dieser Aufgabe und habe auch teils die Lösung davon, aber ich kann sie nicht so ganz nachvollziehen:

Also ich kann davon ausgehen, dass der Mittelpunkt der Sphäre im Ursprung von [mm] $\IR^3$ [/mm] liegt, da die verschobene Kurve abgesehen von einer Rigid Motion äquivalent sind.
So, und jetzt sind die Bilder der Parametrisierung [mm] $\gamma$ [/mm] auf dieser Sphäre. Also kann ich davon ausgehen, dass $$r(s) * t(s) = 0$$

Wobei $r(s)$ der Ortsvektor vom Punkt [mm] $\gamma(s)$ [/mm] ist und $s$ arc length und $t(s)$ der tangentialvektor am punkt [mm] $\gamma(s)$. [/mm]

Wie würde man nun weiter vorgehen?

        
Bezug
Regular Curves: was heißt hier "in a sphere" ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 Di 24.04.2012
Autor: Al-Chwarizmi


> Let [mm]\gamma[/mm] be a regular curve in [mm]\IR^3[/mm] parametrized by
> arc-length. If it is in a sphere with radius r and its
> tortion [mm]\tau[/mm]  is never zero, show its curvature [mm]\kappa[/mm] and
> torsion [mm]\tau[/mm] satisfy the following equation.
>  
> [mm](1/\kappa)^2 + ((\kappa ') / \kappa^2 \tau)^2 = r^2[/mm]
>  
> Hint: the position vector of the curve from the center of
> the sphere can be written as a linear combination of Frenet
> frame.
>  Hallo, ich versuche mich gerade an dieser Aufgabe und habe
> auch teils die Lösung davon, aber ich kann sie nicht so
> ganz nachvollziehen:
>  
> Also ich kann davon ausgehen, dass der Mittelpunkt der
> Sphäre im Ursprung von [mm]\IR^3[/mm] liegt, da die verschobene
> Kurve abgesehen von einer Rigid Motion äquivalent sind.
>  So, und jetzt sind die Bilder der Parametrisierung
> [mm]$\gamma$[/mm] auf dieser Sphäre. Also kann ich davon ausgehen,
> dass [mm]r(s) * t(s) = 0[/mm]
>  
> Wobei [mm]r(s)[/mm] der Ortsvektor vom Punkt [mm]\gamma(s)[/mm] ist und [mm]s[/mm] arc
> length und [mm]t(s)[/mm] der tangentialvektor am punkt [mm]\gamma(s)[/mm].
>  
> Wie würde man nun weiter vorgehen?


Mit "if the curve is in a sphere with radius r"  ist hier wohl
gemeint, dass die Kurve in der Kugelfläche liegen soll -
und nicht etwa bloß innerhalb der entsprechenden (Voll-) Kugel,
oder ?

LG


Bezug
                
Bezug
Regular Curves: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:51 Di 24.04.2012
Autor: leduart

Hallo
in a sphere ist engl eindeutig auf einer Späre, sonst hiesse es in a ball, sphere ist immer eine dim niedriger als der Raum-
gruss leduart

Bezug
                        
Bezug
Regular Curves: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Di 24.04.2012
Autor: Al-Chwarizmi


> Hallo
>  in a sphere ist engl eindeutig auf einer Späre, sonst
> hiesse es in a ball, sphere ist immer eine dim niedriger
> als der Raum-
>  gruss leduart


Consider, however:  

a sphere divides the three dimensional space into two
regions: the inside and the outside of the sphere.
So, "in the sphere" may at least be easily confused
with "inside the sphere" ...

Greetz !   Al


Bezug
        
Bezug
Regular Curves: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Do 26.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]