www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Reihe
Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Fr 27.07.2007
Autor: Steffy

Hallo,


ich hätte da noch eine ähnliche Frage wie die erste.


Wie kommt man auf folgende Gleichheiten:


[mm] \summe_{k=2}^{n} [/mm] (ln*k - ln*(k-1)) = ln*n - ln*1

und

[mm] \summe_{k=2}^{n} [/mm] (ln*(k+1) - ln*k) = ln*(n+1) - ln*2

Könntet ihr mir das bitte auch kurz erklären.

Gruß, Steffy

        
Bezug
Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Fr 27.07.2007
Autor: Somebody


> Hallo,
>  
>
> ich hätte da noch eine ähnliche Frage wie die erste.
>  
>
> Wie kommt man auf folgende Gleichheiten:
>  
>
> [mm]\summe_{k=2}^{n}[/mm] (ln*k - ln*(k-1)) = ln*n - ln*1
>  
> und
>
> [mm]\summe_{k=2}^{n}[/mm] (ln*(k+1) - ln*k) = ln*(n+1) - ln*2
>  

Ist dies wirklich $ln*(k+1)-ln*k$ oder nicht vielmehr [mm] $\ln(k+1)-\ln(k)$ [/mm] (d.h. die Differenz von natürlichen Logarithmen)? Multiplikation ist ja entschieden nicht das selbe wie Funktionsanwendung.

> Könntet ihr mir das bitte auch kurz erklären.

Ich nehme einmal an, dass natürliche Logarithmen gemeint sind:
[mm]\sum_{k=2}^{n}\big(\ln(k) - \ln(k-1)\big) = \big(\red{\ln(2)}\blue{-\ln(1)}\big)+\big(\ln(3)\red{-\ln(2)})+\cdots +\big(\red{\ln(n-1)}-\ln(n-2)\big)+\big(\blue{\ln(n)}\red{-\ln(n-1)}\big) = \blue{\ln(n)-\ln(1)}[/mm]

Wieder heben sich die rot markierten Teile aufeinanderfolgender Summanden auf. Insgesamt bleiben deshalb nur die beiden blau markierten Terme übrig.

Ob in Deiner Fragestellung $ln$ den natürlichen Logarithmus oder eine blosse Konstante bedeutet, spielt für die obige Vereinfachung der Summe eigentlich keine Rolle. Nur liesse sich der Logarithmus [mm] $\ln(1)$ [/mm] natürlich noch zu $0$ vereinfachen, d.h. die Summe wäre dann sogar [mm] $=\ln(n)$. [/mm]

Ganz analog verläuft die Vereinfachung bei Deinem zweiten Beispiel:
[mm]\sum_{k=2}^{n}\big(\ln(k+1) - \ln(k)\big) = \big(\red{\ln(3)}\blue{-\ln(2)}\big)+\big(\ln(4)\red{-\ln(3)})+\cdots +\big(\red{\ln(n)}-\ln(n-1)\big)+\big(\blue{\ln(n+1)}\red{-\ln(n)}\big) = \blue{\ln(n+1)-\ln(2)}[/mm]


Und natürlich könnte man diese Vereinfachungen auch ohne "Pünktchen", nur durch Zerlegen der Summe in zwei Summen, Indexverschiebung und Abspalten des ersten bzw. letzten Gliedes der beiden Teilsummen erhalten.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]