www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihe Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Reihe Konvergenz
Reihe Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Mi 14.04.2010
Autor: Sabine_B.

Aufgabe
Überprüfen Sie, ob die folgende Reihe konvergiert:
[mm] \summe_{i=1}^{\infty}(x+n)^{-1} [/mm]

Hey,
Die Aufgabe scheint mir eigentlich recht einfach zu sein. Ich weiß ja, dass die harmonische Reihe nicht konvergiert, also divergiert [mm] \summe_{i=1}^{\infty}(n)^{-1} [/mm]
Allerdings ist die harmonische Reihe ja größer als meine gegebene Reihe und somit unnütz als Majorante/Minorante.
Auch mit dem Quotienten-/Wurzelkriterium wüsste ich nicht, wie ich zur Lösung kommen könnte...oder kann ich einfach dahingehend argumentieren, dass x eine Konstante ist und im Unendlichen vernachlässigbar ist?
vllt hat jemand von euch ne Idee? Würde mich sehr freuen...

Liebe Grüße
Sabine

        
Bezug
Reihe Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Mi 14.04.2010
Autor: steppenhahn

Hallo!

> Überprüfen Sie, ob die folgende Reihe konvergiert:
>  [mm]\summe_{i=1}^{\infty}(x+n)^{-1}[/mm]
>  Hey,
> Die Aufgabe scheint mir eigentlich recht einfach zu sein.
> Ich weiß ja, dass die harmonische Reihe nicht konvergiert,
> also divergiert [mm]\summe_{i=1}^{\infty}(n)^{-1}[/mm]
>  Allerdings ist die harmonische Reihe ja größer als meine
> gegebene Reihe und somit unnütz als Majorante/Minorante.

So sieht es zunächst aus.
Faktisch ist das aber nicht so.
Du kannst dir merken: Wenn eine Reihe "so aussieht" wie eine harmonische Reihe, dann kannst auch immer mit Hilfe des Minorantenkriteriums und der harmonischen Reihe die Reihe zum Divergieren bringen.

Du hast also gegeben:

[mm] $\sum_{n=1}^{\infty}\frac{1}{n+x}$ [/mm]

?
Hast du auch gegeben, aus welchem Bereich x stammt?


Du kannst beim Beweis so vorgehen:
1. $x [mm] \le [/mm] 0$. Dann kannst du die Reihe mit dem Minorantenkriterium ganz normal verarzten.
2. $x > 0$. Du könntest zum Beispiel Folgendes machen:

Die harmonische Reihe [mm] $\sum_{n=1}^{\infty}\frac{1}{n}$ [/mm] ist divergent.
Deswegen ist auch [mm] $(x+1)*\sum_{n=1}^{\infty}\frac{1}{n*(x+1)}$ [/mm] divergent.

Nun gilt [mm] $\frac{1}{n+x} \ge \frac{1}{n + n*x} [/mm] = [mm] \frac{1}{n*(1+x)}$ [/mm]
(da $n [mm] \ge [/mm] 1$).

Also...

Grüße,
Stefan

Bezug
        
Bezug
Reihe Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:38 Do 15.04.2010
Autor: fred97

x ist fest. Es gibt ein N [mm] \in \IN [/mm] mit  N>|x|. Rechne nun nach, dass


                 [mm] $\bruch{1}{x+n}> \bruch{1/2}{n}$ [/mm] für n [mm] \ge [/mm] N

ist

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]