www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihe, Konvergenz o. Divergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Reihe, Konvergenz o. Divergenz
Reihe, Konvergenz o. Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe, Konvergenz o. Divergenz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:42 Mi 07.05.2008
Autor: Xerxes2504

Aufgabe
Beweisen Sie die Konvergenz bzw. die Divergenz durch geeigneten
Vergleich:
a)   [mm] \summe_{k=0}^{\infty} \bruch{1}{10^k+1} [/mm]  


b)       [mm] \summe_{k=2}^{\infty} \bruch{1}{ln(k)} [/mm]  

Hallo zusammen,

hab da ein kleines Problem bei den Aufgaben zu den Reihen.

a) Habe ich gelöst indem ich die bekannte konvergente Reihe
[mm] \summe_{k=1}^{\infty} \bruch{1}{2k} [/mm] genommen habe und angegeben habe das  [mm] |a_n|<=b_n [/mm] mit [mm] a_n=\bruch{1}{10^n+1} [/mm] und
[mm] b_n=\bruch{1}{2n} [/mm] und daher folgt das [mm] b_n [/mm] konvergente Majorante von [mm] a_n [/mm] ist und daher
[mm] \summe_{k=0}^{\infty} \bruch{1}{10^k+1} [/mm] konvergiert

b) Habe ich analog gelöst indem ich die bekannte divergente Reihe [mm] \summe_{k=1}^{\infty} \bruch{1}{k} [/mm] genommen habe und angegeben habe das [mm] a_n>=b_n [/mm] ist mit [mm] a_n= \bruch{1}{ln(n)} [/mm]
und [mm] b_n= \bruch{1}{n} [/mm] und daher folgt das [mm] b_n [/mm] divergente Minorante von [mm] a_n [/mm] ist und daher
[mm] \summe_{k=2}^{\infty} \bruch{1}{ln(k)} [/mm] divergiert.

Meine Frage nun dazu , ist das in Ordnung? Kann ich 2 Reihen zueinander Abschätzen wobei die eine bei k=0 und die andere bei k=2 anfängt?(für mich wäre das logich da es im unendlichen ja kein Unterschied macht ob ich endlich viele Glieder dazu addiere oder abziehe)
Oder muss ich noch etwas beachten?

Vielen Danke,
Tommy

        
Bezug
Reihe, Konvergenz o. Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Mi 07.05.2008
Autor: schachuzipus

Hallo Tommy,

dein Vorgehen ist an sich richtig und beruht auf dem Majoranten- oder Vergleichskriterium


> Beweisen Sie die Konvergenz bzw. die Divergenz durch
> geeigneten
>  Vergleich:
>  a)   [mm]\summe_{k=0}^{\infty} \bruch{1}{10^k+1}[/mm]  
>
>
> b)       [mm]\summe_{k=2}^{\infty} \bruch{1}{ln(k)}[/mm]  
> Hallo zusammen,
>  
> hab da ein kleines Problem bei den Aufgaben zu den Reihen.
>  
> a) Habe ich gelöst indem ich die bekannte konvergente
> Reihe
>  [mm]\summe_{k=1}^{\infty} \bruch{1}{2k}[/mm] [notok]

Das ist eine bekannte divergente Reihe, du hast sie weiter unten auch benutzt ;-)

Du kannst doch [mm] $\summe_{k=1}^{\infty} \bruch{1}{2k}$ [/mm] schreiben als [mm] $\frac{1}{2}\cdot{}\summe_{k=1}^{\infty} \bruch{1}{k}$ [/mm]

Und wenn [mm] $\summe_{k=1}^{\infty} \bruch{1}{k}$ [/mm] gegen [mm] $\infty$ [/mm] divergiert, so tut es [mm] $\frac{1}{2}\cdot{}\summe_{k=1}^{\infty} \bruch{1}{k}$ [/mm] auch




> genommen habe und
> angegeben habe das  [mm]|a_n|<=b_n[/mm] mit [mm]a_n=\bruch{1}{10^n+1}[/mm]

Vom Prinzip her richtig, finde eine konvergente Majorante, also eine größere Reihe, die konvergent ist, also einen endlichen Reihenwert hat, dann bleibt deiner armen kleineren Ausgangsreihe nichts anderes übrig als auch einen endlichen Wert zu haben, also zu konvergieren

Als Tipp werfe ich mal das Stichwort "geometrische Reihe" in den Raum.

Versuche also deine Reihe zu vergrößern und (naheliegend) gegen eine konvergente geometrische Reihe abzuschätzen

> und
>  [mm]b_n=\bruch{1}{2n}[/mm] und daher folgt das [mm]b_n[/mm] konvergente
> Majorante von [mm]a_n[/mm] ist und daher
> [mm]\summe_{k=0}^{\infty} \bruch{1}{10^k+1}[/mm] konvergiert
>  
> b) Habe ich analog gelöst indem ich die bekannte divergente
> Reihe [mm]\summe_{k=1}^{\infty} \bruch{1}{k}[/mm] [ok]

Genau!

> genommen habe und
> angegeben habe das [mm]a_n>=b_n[/mm] ist mit [mm]a_n= \bruch{1}{ln(n)}[/mm]
>  
> und [mm]b_n= \bruch{1}{n}[/mm] und daher folgt das [mm]b_n[/mm] divergente
> Minorante von [mm]a_n[/mm] ist und daher
> [mm]\summe_{k=2}^{\infty} \bruch{1}{ln(k)}[/mm] divergiert. [ok]
>  
> Meine Frage nun dazu , ist das in Ordnung?

(b) ja, (a) nein

> Kann ich 2
> Reihen zueinander Abschätzen wobei die eine bei k=0 und die
> andere bei k=2 anfängt?

Lasse einfach beide Reihen beim gleichen Startwert beginnen, du kannst immer endlich viele(!!) Glieder bei der Reihe wegnehmen oder hinzufügen ohne das Konvergenzverhalten zu ändern

Da eine endliche Summe immer endlich ist, ändert das Wegnehmen oder Hinzufügen von endlich vielen Summanden nix am Konvergenzverhalten (also an der Konvergenz bzw. Divergenz) der Reihe (wohl aber am konkreten Grenz- oder Reihenwert)

> (für mich wäre das logich da es im
> unendlichen ja kein Unterschied macht ob ich endlich viele
> Glieder dazu addiere oder abziehe)
>  Oder muss ich noch etwas beachten?
>  
> Vielen Danke,
>  Tommy


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]