www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihe auf Konvergenz prüfen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Reihe auf Konvergenz prüfen
Reihe auf Konvergenz prüfen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe auf Konvergenz prüfen: Idee
Status: (Frage) beantwortet Status 
Datum: 19:02 Fr 16.03.2012
Autor: Hellsing89

Aufgabe
Prüfen sie die Reihe:

[mm] \summe (\wurzel[n]{a}-1) [/mm]

auf Konvergenz.

Also, da die [mm] \wurzel[n]{a} [/mm] gegen 1 konvergiert, ist das notwendige Kriterium auf jedenfall schonmal gegeben.

Das bedeutet die Reihe könnte also konvergieren.

Wenn  [mm] \wurzel[n]{a} [/mm] gegen 1 konvergiert, dann bleibt die Summe eine leere Summe, da ja immer nur 0, addiert wird.

Allerdings hab ich keine ahnung wie man das beweist. Für a=1 ist die Wurzel immer 1, das bedeutet die Reihe muss konvergieren, immerhin ist es ja nur eine Summe von 0en.

Aber was ist mit a>0 ?

Vielen dank schonmal.

        
Bezug
Reihe auf Konvergenz prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Fr 16.03.2012
Autor: Valerie20

Hi!

> Prüfen sie die Reihe:
>  
> [mm]\summe (\wurzel[n]{a}-1)[/mm]
>  
> auf Konvergenz.
>  Also, da die [mm]\wurzel[n]{a}[/mm] gegen 1 konvergiert, ist das
> notwendige Kriterium auf jedenfall schonmal gegeben.
>  
> Das bedeutet die Reihe könnte also konvergieren.
>  
> Wenn  [mm]\wurzel[n]{a}[/mm] gegen 1 konvergiert, dann bleibt die
> Summe eine leere Summe, da ja immer nur 0, addiert wird.
>  
> Allerdings hab ich keine ahnung wie man das beweist. Für
> a=1 ist die Wurzel immer 1, das bedeutet die Reihe muss
> konvergieren, immerhin ist es ja nur eine Summe von 0en.
>  
> Aber was ist mit a>0 ?
>
> Vielen dank schonmal.

Du solltest das anders angehen.
Welche Möglichkeiten gibt es denn eine Reihe auf Konvergenz zu untersuchen?
Es wäre da zum Beispiel das Quotientenkriterium,.....

Gruß
Valerie


Bezug
                
Bezug
Reihe auf Konvergenz prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Sa 17.03.2012
Autor: Hellsing89


> Hi!
>  
> > Prüfen sie die Reihe:
>  >  
> > [mm]\summe (\wurzel[n]{a}-1)[/mm]
>  >  
> > auf Konvergenz.
>  >  Also, da die [mm]\wurzel[n]{a}[/mm] gegen 1 konvergiert, ist das
> > notwendige Kriterium auf jedenfall schonmal gegeben.
>  >  
> > Das bedeutet die Reihe könnte also konvergieren.
>  >  
> > Wenn  [mm]\wurzel[n]{a}[/mm] gegen 1 konvergiert, dann bleibt die
> > Summe eine leere Summe, da ja immer nur 0, addiert wird.
>  >  
> > Allerdings hab ich keine ahnung wie man das beweist. Für
> > a=1 ist die Wurzel immer 1, das bedeutet die Reihe muss
> > konvergieren, immerhin ist es ja nur eine Summe von 0en.
>  >  
> > Aber was ist mit a>0 ?
> >
> > Vielen dank schonmal.
>
> Du solltest das anders angehen.
>  Welche Möglichkeiten gibt es denn eine Reihe auf
> Konvergenz zu untersuchen?
> Es wäre da zum Beispiel das Quotientenkriterium,.....
>  
> Gruß
> Valerie
>  

Okay wenn ich das Quotientenkriterium anwende erhalte ich:

[mm] |\bruch{\wurzel[n+1]{a}-1}{\wurzel[n]{a}-1}| [/mm]

[mm] \limes_{n\rightarrow\infty} |\bruch{1-1}{1-1}| [/mm] = [mm] \bruch{0}{0}<1 [/mm]

Den die [mm] \wurzel[n]{a}, a\in\IR\to1 [/mm]

Aber durch 0 darf man doch garnicht teilen, oder ist es im fall [mm] \bruch{0}{0} [/mm] erlaubt ?

Also irgendwie sieht mir das nicht korrekt aus :-/

Bezug
                        
Bezug
Reihe auf Konvergenz prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Sa 17.03.2012
Autor: Marcel

Hallo,

> > Hi!
>  >  
> > > Prüfen sie die Reihe:
>  >  >  
> > > [mm]\summe (\wurzel[n]{a}-1)[/mm]
>  >  >  
> > > auf Konvergenz.
>  >  >  Also, da die [mm]\wurzel[n]{a}[/mm] gegen 1 konvergiert, ist
> das
> > > notwendige Kriterium auf jedenfall schonmal gegeben.

soweit war das korrekt.

> > > Das bedeutet die Reihe könnte also konvergieren.

Richtig.

> > > Wenn  [mm]\wurzel[n]{a}[/mm] gegen 1 konvergiert, dann bleibt die
> > > Summe eine leere Summe, da ja immer nur 0, addiert wird.

Was??
  

> > > Allerdings hab ich keine ahnung wie man das beweist.

Dann erkläre mal, was Du eigentlich beweisen willst. "Im Unendlichen" können wir nichts machen...

> > > Für
> > > a=1 ist die Wurzel immer 1, das bedeutet die Reihe muss
> > > konvergieren, immerhin ist es ja nur eine Summe von 0en.

Auch das stimmt.
  

> > > Aber was ist mit a>0 ?
> > >
> > > Vielen dank schonmal.
> >
> > Du solltest das anders angehen.
>  >  Welche Möglichkeiten gibt es denn eine Reihe auf
> > Konvergenz zu untersuchen?
> > Es wäre da zum Beispiel das Quotientenkriterium,.....
>  >  
> > Gruß
> > Valerie
>  >  
>
> Okay wenn ich das Quotientenkriterium anwende erhalte ich:
>  
> [mm]|\bruch{\wurzel[n+1]{a}-1}{\wurzel[n]{a}-1}|[/mm]
>  
> [mm]\limes_{n\rightarrow\infty} |\bruch{1-1}{1-1}|[/mm] =
> [mm]\bruch{0}{0}<1[/mm]

Hier wird es falsch. Aus [mm] $a_n \to a\,, b_n \to [/mm] b$ und [mm] $c_n \to [/mm] c$ (wobei [mm] $\pm \infty$ [/mm] für $a,b,c$ NICHT erlaubt sei) folgt zwar
[mm] $$|a_n| \to |a|\,,$$ [/mm]
aber
[mm] $$b_n/c_n \to [/mm] b/c$$
bedarf der Forderung $c [mm] \not=0\,.$ [/mm] (Woraus auch folgt, dass alle bis auf endlich viele [mm] $c_n$ [/mm] natürlich [mm] $c_n \not=0$ [/mm] erfüllen!)

Eine Division [mm] "$0/0\,$" [/mm] ist auch nicht erlaubt, aber es gibt sowas wie den Satz von de l'Hopital, da gibt's eine "Behandlungsmöglichkeit" von Fällen der Art "$0/0$".

Ich denke allerdings, dass Du hier mit dem Quotientenkriterium nicht weiterkommst (ich habe mir mal einen Plot von
[mm] $$\displaystyle [/mm] x [mm] \mapsto \frac{3^{1/([x]+1)}-1}{3^{1/[x]}-1}$$ [/mm]
angeschaut, es sieht aus, als wenn bei $x [mm] \to \infty$ [/mm] die Funktion gegen [mm] $1\,$ [/mm] konvergiert).

Ob's hilft, weiß ich nicht, aber vielleicht kann man ja
[mm] $$a^{1/n}=\exp((1/n)*\ln(a))$$ [/mm]
schreiben. Danach
[mm] $$\exp((1/n)*\ln(a))=1+\sum_{k=1}^\infty \frac{(1/n)^k*\ln^k(a)}{k!}$$ [/mm]
schreiben und damit nach einer passenden Abschätzung suchen...

P.S.
Wenn Du genau hinguckst, sollte hier - jedenfalls für $a > [mm] 1\,$ [/mm] - sowas wie
[mm] $$\sum_{n=1}^\infty \sum_{k=1}^\infty a_{n,k} \ge \sum_{n=1}^\infty a_{n,1}$$ [/mm]
zum Ziel führen. Dies darfst Du verwenden, wenn alle [mm] $a_{n,k} \ge [/mm] 0$ sind. (Bzw. wenn für $k [mm] \ge [/mm] 2$ alle [mm] $a_{n,k} \ge [/mm] 0$ sind, wäre auch hinreichend!)

Dann musst Du Dir also noch Gedanken zum Fall $0 < a < [mm] 1\,$ [/mm] machen...

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]