www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihe divergiert?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Reihe divergiert?
Reihe divergiert? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe divergiert?: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:22 Mi 07.01.2015
Autor: mathe-assi

Aufgabe
Man untersuche auf Konvergenz bzw. absolute Konvergenz:
[mm] \summe_{n=1}^{\infty}\bruch{1}{n\wurzel[n]{n}} [/mm]

Dies ist nur eine der Reihen, die mehr oder weniger Probleme machen ...

Quotienten und Wurzelkriterium bringen nicht weiter, da jeweils 1.
Wolfram Alpha sagt, die Reihe divergiere und man solle dies durch Vergleich zeigen.
Bisher haben wir immer mit der harmonischen Reihe als Minorante verglichen. Dies gelingt mir aber nicht.
Womit vergleicht man denn sinnvollerweise noch? Oder stehe ich mal wieder nur auf dem Schlauch?

        
Bezug
Reihe divergiert?: divide et impera !
Status: (Antwort) fertig Status 
Datum: 19:32 Mi 07.01.2015
Autor: Al-Chwarizmi


> Man untersuche auf Konvergenz bzw. absolute Konvergenz:
>  [mm]\summe_{n=1}^{\infty}\bruch{1}{n\wurzel[n]{n}}[/mm]
>  Dies ist nur eine der Reihen, die mehr oder weniger
> Probleme machen ...
>  
> Quotienten und Wurzelkriterium bringen nicht weiter, da
> jeweils 1.
>  Wolfram Alpha sagt, die Reihe divergiere und man solle
> dies durch Vergleich zeigen.
> Bisher haben wir immer mit der harmonischen Reihe als
> Minorante verglichen. Dies gelingt mir aber nicht.
>  Womit vergleicht man denn sinnvollerweise noch?

Versuche es mal mit der Reihe, die aus der harmonischen
Reihe durch Halbierung aller ihrer Glieder entsteht ...

LG  ,   Al-Chwarizmi

Bezug
                
Bezug
Reihe divergiert?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Mi 07.01.2015
Autor: mathe-assi

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  $ {n\wurzel[n]{n} < n\wurzel{2} < 2n, $

also gilt $ \bruch{1}{n\wurzel[n]{n} $ > $\bruch{1}{2n}} $

Und damit habe ich dann den Vergleich zu einer der harmonischen Reihe "ähnlichen" Reihe - oder wie sagt man in der Begründung?







Bezug
                        
Bezug
Reihe divergiert?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Mi 07.01.2015
Autor: Al-Chwarizmi


>   [mm]{n\wurzel[n]{n} < n\wurzel{2} < 2n,[/mm]

naja, das sollte nicht einfach hingeschrieben, sondern
schon noch im Detail nachgewiesen werden !
  

> also gilt [mm]\bruch{1}{n\wurzel[n]{n}[/mm] > [mm]\bruch{1}{2n}}[/mm]

(Dabei muss noch berücksichtigt werden, dass wir es nur mit
positiven Werten zu tun haben !)

> Und damit habe ich dann den Vergleich zu einer der
> harmonischen Reihe "ähnlichen" Reihe - oder wie sagt man
> in der Begründung?

Zeige, dass aus der Divergenz der Reihe  [mm] $\summe_{n=1}^{\infty}\frac{1}{n}$ [/mm]
auch die der neuen Reihe  [mm] $\summe_{n=1}^{\infty}\frac{1}{2\,n}$ [/mm]  folgt.

LG  ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]