www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:37 Do 20.09.2007
Autor: beta81

Aufgabe
[mm] 2\summe_{j=1}^{\infty}\bruch{\sin^2(qj/2)}{j^5}=\summe_{j=1}^{\infty}\bruch{1-\cos^2(qj/2)+\sin^2(qj/2)}{j^5} [/mm]
[mm] \summe_{j=1}^{\infty}\bruch{1}{j^5} [/mm]
[mm] -\summe_{j=1}^{\infty}\bruch{\cos^2(qj/2)}{j^5} [/mm]

Hallo,

ich wuerde gern wissen, wie man auf die erste Zeile kommt? Kann mir da einer bitte helfen?

Dazu braucht man eigentlich nur zu wissen, gegen welchen Wert die zwei unteren Reihen konvergieren...

Danke!

Gruss beta

        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Do 20.09.2007
Autor: holwo

Hallo!

[mm] 2\summe_{j=1}^{\infty}\bruch{\sin^2(qj/2)}{j^5}=\summe_{j=1}^{\infty}=\bruch{2sin^{2}(qj/2)}{j^5}=\summe_{j=1}^{\infty}\bruch{sin^{2}(qj/2)+sin^{2}(qj/2)}{j^5} [/mm]

und da [mm] sin^{2}(x)+cos^{2}(x)=1 [/mm] folgt [mm] sin^{2}(x)=1-cos^{2}(x) [/mm] also [mm] \summe_{j=1}^{\infty}\bruch{1-\cos^2(qj/2)+\sin^2(qj/2)}{j^5} [/mm]

meinst du das?

Bezug
                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Do 20.09.2007
Autor: beta81

Aufgabe
[mm] \summe_{j=1}^{\infty}\bruch{\sin(qj)}{j^5}=0 [/mm]

Ja genau! Danke! Ich hab's einfach nicht gesehen.

Noch ne letzte Frage. Das dieser Ausdruck gleich Null ist, stimmt ja auch, da der Sinus antisymmetrisch ist, ge?

q ist irgendeine Konstante. In der Physik waere q z.B. irgendeine Wellenzahl.

Gruss beta

Bezug
                        
Bezug
Reihen: Was ist q ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 Do 20.09.2007
Autor: Roadrunner

Hallo beta!


Was soll denn $q_$ sein?


Gruß vom
Roadrunner


Bezug
                                
Bezug
Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:39 Do 20.09.2007
Autor: beta81

.

q ist irgendeine Konstante. In der Physik waere es z.B. irgendeine Wellenzahl.


Bezug
                        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Fr 21.09.2007
Autor: subclasser

Hallo beta!

Im Allgemeinen ist das nicht richtig. Wähle z.B. $q = [mm] \frac{\pi}{2}$. [/mm] Dann gilt
[mm] $$\sum_{j=1}^{\infty}\frac{\sin(\frac{\pi}{2} j)}{j^5} [/mm] = [mm] \sum_{j=1}^{\infty} (-1)^{j - 1} \frac{1}{(2j - 1)^5} [/mm] = 1 - [mm] \frac{1}{3^5} [/mm] + [mm] \frac{1}{5^5} [/mm] - [mm] \ldots$$ [/mm]
Diese Reihe konvergiert zwar nach dem Leibnizkriterium, aber sicherlich nicht gegen Null.

Gruß!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]