www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihen, Konvergenz Divergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Reihen, Konvergenz Divergenz
Reihen, Konvergenz Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen, Konvergenz Divergenz: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:49 Mo 15.11.2010
Autor: sanane

Hallo.. wie immer haben wir übungsaufgaben bekommen, die wir abgeben müssen.. und für folgende aufgabe gibt es extrapunkte, die ich bei meinem aktuellen punktestand echt benötigen könnte:

Untersuchen die folgende Reihen auf Konvergenz oder Divergenz:

[mm] \summe_{i=3}^{\infty} [/mm] 1/n*ln*n

Kann mir bitte jemand sagen, wie ich an die Aufgabe rangehen muss? wäre sehr dankbar.

        
Bezug
Reihen, Konvergenz Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Mo 15.11.2010
Autor: algieba


> Hallo.. wie immer haben wir übungsaufgaben bekommen, die
> wir abgeben müssen.. und für folgende aufgabe gibt es
> extrapunkte, die ich bei meinem aktuellen punktestand echt
> benötigen könnte:
>  
> Untersuchen die folgende Reihen auf Konvergenz oder
> Divergenz:
>  
> [mm]\summe_{i=3}^{\infty}[/mm] 1/n*ln*n

Könntest du bitte die Summe verständlicher aufschreiben. Ich verstehe nicht was genau du hier meinst. Und der Summenindex i ist in der Summe sogar gar nicht enthalten. Bitte benutze doch auch für 1/n*ln*n den Formeleditor, damit es einfach leichter lesbar ist.

Viele Grüße
algieba

>  
> Kann mir bitte jemand sagen, wie ich an die Aufgabe
> rangehen muss? wäre sehr dankbar.


Bezug
                
Bezug
Reihen, Konvergenz Divergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Mo 15.11.2010
Autor: sanane

[mm] \summe_{n=3}^{\infty} [/mm] 1/n*ln*n

(also im nenner steht n mal ln mal n ) ..sry aber besser  kann ich es nicht aufschreiben :S

Bezug
        
Bezug
Reihen, Konvergenz Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Mo 15.11.2010
Autor: fred97


> Hallo.. wie immer haben wir übungsaufgaben bekommen, die
> wir abgeben müssen.. und für folgende aufgabe gibt es
> extrapunkte, die ich bei meinem aktuellen punktestand echt
> benötigen könnte:
>  
> Untersuchen die folgende Reihen auf Konvergenz oder
> Divergenz:
>  
> [mm]\summe_{i=3}^{\infty}[/mm] 1/n*ln*n

Du meinst wohl

              [mm]\summe_{n=3}^{\infty}[/mm] [mm] \bruch{1}{n*ln(n)} [/mm]

>  
> Kann mir bitte jemand sagen, wie ich an die Aufgabe
> rangehen muss? wäre sehr dankbar.

Tipp: Integralkriterium

                 http://de.wikipedia.org/wiki/Integralkriterium

FRED


Bezug
                
Bezug
Reihen, Konvergenz Divergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Mo 15.11.2010
Autor: sanane

auf dem zettel steht es aber ohne klammern... ist also ein "fehler" in der aufgabe drin?

Bezug
                        
Bezug
Reihen, Konvergenz Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Mo 15.11.2010
Autor: schachuzipus

Hallo sansane,

> auf dem zettel steht es aber ohne klammern... ist also ein
> "fehler" in der aufgabe drin?

Nein, ob du [mm]\ln(n)[/mm] oder [mm]\ln n[/mm] schreibst, ist einerlei.

Bei deiner Schreibweise fehlten Klammern um den gesamten Nenner!

Es ist [mm]1/n\cdot{}\ln(n)=\frac{1}{n}\cdot{}\ln(n)[/mm] <-- so hast du's geschrieben

Du meinst aber [mm]1/\red{(}n\cdot{}\ln(n)\red{)}=\frac{1}{n\cdot{}\ln(n)}[/mm]

Gruß

schachuzipus

Bezug
                                
Bezug
Reihen, Konvergenz Divergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Mo 15.11.2010
Autor: sanane

ahso okay ... jetzt hab ich diesen link erhalten und mir die seite zum integralkriterium mal angeschaut.. aber so etwas hatten wir gar nicht .. :(

Bezug
                                        
Bezug
Reihen, Konvergenz Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Mo 15.11.2010
Autor: fred97

Hattet Ihr das Verdichtungskriterium

                      http://de.wikipedia.org/wiki/Cauchysches_Verdichtungskriterium

?

Wenn ja, probier es damit.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]