www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihenkonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Reihenkonvergenz
Reihenkonvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenkonvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 So 27.08.2006
Autor: Superhaufen

Aufgabe
Für welche Zahlen [mm] x\inIR [/mm] konvergiert die folgende Reihe:
[mm] \summe_{k=1}^{\infty}\bruch{2}{k+1}(x-3)^{k+1} [/mm]

Hallo!
Ich habe ein paar "kleinere" Vertändnisfragen was Konvergente Folgen angeht und ich hoffe, dass jemand so nett ist, und mir ein wenig weiter hilft.
Ich schreibe einfach mal meine Gedanken auf und ich bitte mich zu korrigieren, falls ich falsch liege:

Da es sich um eine Potenzreihe handelt, ist doch im Prinzip nach dem Konvergenzradius gefragt, oder?
Also kann man nach der Formel vorgehen:
[mm] R=\limes_{n\rightarrow\infty}\summe_{k=1}^{\infty}\bruch{a_{n}}{a_{n}_{+1}} [/mm]
Zunächst aber vereinfache ich die Summe, indem ich sage:
[mm] \summe_{k=1}^{\infty}\bruch{2}{k+1}(x-3)^{k+1}=\summe_{k=1}^{\infty}\bruch{2}{k+1}(x-3)^{k}(x-3)^1 [/mm]
und da in [mm] (x-3)^1 [/mm] kein k mehr drine ist, kann man es vor die Summe schreiben, also:
[mm] (x-3)\summe_{i=1}^{\infty}\bruch{2}{k+1}(x-3)^{k} [/mm]
Nun Interessiert mich doch erstmal nur das [mm] \bruch{2}{k+1}, [/mm] da das (x-3) wenn k gegen [mm] \infty [/mm] läuft vernachlässigbar ist, oder?
Also:
[mm] R=\limes_{n\rightarrow\infty}\summe_{k=1}^{\infty}\bruch{a_{n}}{a_{n}_{+1}}=\limes_{n\rightarrow\infty}\bruch{2 (k+2)}{2(k+1)}=1 [/mm]

Der "Nullpunkt" des Konvergenzradius ist [mm] x_{0}=3. [/mm] Also ist das Konv. Intervall doch [mm] (x_{0}-R,x_{0}+R) [/mm] also (3-1,3+1) = (2,4)

Nun aber die Frage, reicht das? Oder muss ich bei der Frage nach "für welche x konvergiert die Reiche" auch noch die Randpunkte beachteten?



Habe noch eine weiter Frage zu der selben Fragestellung aber andere Aufgabe:
[mm] \summe_{k=1}^{\infty}e^{x+kx} [/mm]
Das ist doch KEINE Potenzreihe mehr oder? Also kann ich nicht auf dem "normalen" Weg den Konv.Radius raus bekommen, oder?
Wenn man das umstellt sieht das ja so aus:
[mm] \summe_{k=1}^{\infty}e^{x}e^{kx}, [/mm] oder auch [mm] \summe_{k=1}^{\infty}e^{x(1+k)} [/mm] oder [mm] \summe_{k=1}^{\infty}e^{x}(e^{x})^k [/mm] aber wie weiter?!
Hat irgendjemand ein gutes "Stichwort" für mich?

1000Dank für die Hilfe, weiß einfach nicht mehr weiter....

Viele Grüße.
TINA

Ich habe die Fragen in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Reihenkonvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 Mo 28.08.2006
Autor: Superhaufen

Kann mir denn niemand helfen?

Bezug
        
Bezug
Reihenkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 Mo 28.08.2006
Autor: banachella

Hallo Superhaufen!

Zunächst mal das wichtigste: [willkommenmr]

> Da es sich um eine Potenzreihe handelt, ist doch im Prinzip
> nach dem Konvergenzradius gefragt, oder?
>  Also kann man nach der Formel vorgehen:
>  
> [mm]R=\limes_{n\rightarrow\infty}\summe_{k=1}^{\infty}\bruch{a_{n}}{a_{n}_{+1}}[/mm]
>  Zunächst aber vereinfache ich die Summe, indem ich sage:
>  
> [mm]\summe_{k=1}^{\infty}\bruch{2}{k+1}(x-3)^{k+1}=\summe_{k=1}^{\infty}\bruch{2}{k+1}(x-3)^{k}(x-3)^1[/mm]
>  und da in [mm](x-3)^1[/mm] kein k mehr drine ist, kann man es vor
> die Summe schreiben, also:
>  [mm](x-3)\summe_{i=1}^{\infty}\bruch{2}{k+1}(x-3)^{k}[/mm]

So kannst du es machen, oder auch [mm] $2*\summe_{i=0}^\infty \bruch [/mm] 1k [mm] (x-3)^k$ [/mm] betrachten.  Ist ghupft wie gsprungen. :-)

>  Nun Interessiert mich doch erstmal nur das [mm]\bruch{2}{k+1},[/mm]
> da das (x-3) wenn k gegen [mm]\infty[/mm] läuft vernachlässigbar
> ist, oder?

Jein. Für die Berechnung des Konvergenzradiuses betrachtest du in der Tat nur [mm] $\bruch [/mm] 2{k+1}$. Das liegt aber daran, weil $R$ so gewählt werden soll, dass [mm] $\limsup_{n\to\infty}\bruch{2(k+1)(x-3)^{k+1}}{2(k+2)(x-3)^{k}}<1$ [/mm] für alle $|x-3|<R$ gilt. Wenn [mm] $k\to\infty$ [/mm] kann [mm] $(x-3)^k\to\infty$ [/mm] gelten, ist also keineswegs vernachlässigbar...

>  Also:
>  
> [mm]R=\limes_{n\rightarrow\infty}\summe_{k=1}^{\infty}\bruch{a_{n}}{a_{n}_{+1}}=\limes_{n\rightarrow\infty}\bruch{2 (k+2)}{2(k+1)}=1[/mm]
>  
> Der "Nullpunkt" des Konvergenzradius ist [mm]x_{0}=3.[/mm] Also ist
> das Konv. Intervall doch [mm](x_{0}-R,x_{0}+R)[/mm] also (3-1,3+1) =
> (2,4)

[daumenhoch] So ist es!

> Nun aber die Frage, reicht das? Oder muss ich bei der Frage
> nach "für welche x konvergiert die Reiche" auch noch die
> Randpunkte beachteten?

Wenn die Frage lautet "Für welche $x$ konvergiert die Reihe?", dann solltest du auf jeden Fall die Randpunkte betrachten. Setz' doch einfach mal $2$ und $4$ ein und betrachte dann die Reihe!

> Habe noch eine weiter Frage zu der selben Fragestellung
> aber andere Aufgabe:

[aufgemerkt] Bitte beachte in Zukunft unsere Forenregeln und stelle keine zwei voneinander unabhängigen Fragen im selben Thread.

>  [mm]\summe_{k=1}^{\infty}e^{x+kx}[/mm]
>  Das ist doch KEINE Potenzreihe mehr oder? Also kann ich
> nicht auf dem "normalen" Weg den Konv.Radius raus bekommen,
> oder?
>  Wenn man das umstellt sieht das ja so aus:
>  [mm]\summe_{k=1}^{\infty}e^{x}e^{kx},[/mm] oder auch
> [mm]\summe_{k=1}^{\infty}e^{x(1+k)}[/mm] oder
> [mm]\summe_{k=1}^{\infty}e^{x}(e^{x})^k[/mm] aber wie weiter?!
>  Hat irgendjemand ein gutes "Stichwort" für mich?

Probiers' doch mal mit der Substitution [mm] $y=e^x$. [/mm] Dann erhältst du die Reihe [mm] $\summe_{k=1}^{\infty}y^{k+1}=\summe_{k=0}^\infty y^k$... [/mm] Kommst du nun auf die Lösung?

Gruß, banachella

Bezug
                
Bezug
Reihenkonvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Mo 28.08.2006
Autor: Superhaufen

Viiiiieelen Dank, Banachella!
Du hast mir sehr weiter geholfen!

Die Lösung der 2.Aufgabe ist nun eigentlich auch klar! :)
[mm] \forall{x>0 \Rightarrow \summe_{k=1}^{\infty}e^{x+kx} = divergent} [/mm]
[mm] \forall{x<0 \Rightarrow \summe_{k=1}^{\infty}e^{x+kx} = konvergent} [/mm]

Viel Grüße! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]