www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihensumme Partialbruchzerl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Reihensumme Partialbruchzerl.
Reihensumme Partialbruchzerl. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihensumme Partialbruchzerl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Do 09.12.2010
Autor: dreamweaver

Aufgabe
Berechnen Sie die Summe der folgenden Reihe:
[mm] \summe_{k=1}^{\infty} \bruch{1}{(7+k)(8+k)} [/mm]

Ich brauch wieder mal Hilfe.

Bei dieser Aufgabe muss man doch die Partialbruchzerlegung anwenden denke ich.
Ich hab also folgendes gemacht:

[mm] \summe_{k=1}^{\infty} \bruch{1}{(7+k)(8+k)} [/mm] = [mm] \summe_{k=1}^{\infty} \bruch{A}{7+k} [/mm] + [mm] \summe_{k=1}^{\infty}\bruch{B}{8+k} [/mm]

1 = [mm] A\cdot{}(8+k) [/mm] + [mm] B\cdot{}(7+k) [/mm]
1 = 8A + 7B + k(A+B)

[mm] k^{1}: [/mm]
k(A+B) = 0
A = -B

[mm] k^{0}: [/mm]
8A + 7B = 1
-8B + 7B = 1
B = -1

----------
B = -1
A = +1

[mm] \summe_{k=1}^{\infty} \bruch{1}{(7+k)(8+k)} [/mm] = [mm] \summe_{k=1}^{\infty} \bruch{1}{7+k} [/mm] - [mm] \summe_{k=1}^{\infty}\bruch{1}{8+k} [/mm]

Ist das richtig soweit?
Wie gehts jetzt weiter? Wie kann ich daraus die Summe berechnen?

Lg


        
Bezug
Reihensumme Partialbruchzerl.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Do 09.12.2010
Autor: schachuzipus

Hallo dreamweaver,

> Berechnen Sie die Summe der folgenden Reihe:
> [mm]\summe_{k=1}^{\infty} \bruch{1}{(7+k)(8+k)}[/mm]
> Ich brauch
> wieder mal Hilfe.
>
> Bei dieser Aufgabe muss man doch die Partialbruchzerlegung
> anwenden denke ich.
> Ich hab also folgendes gemacht:
>
> [mm]\summe_{k=1}^{\infty} \bruch{1}{(7+k)(8+k)}[/mm] = [mm]\summe_{k=1}^{\infty} \bruch{A}{7+k}[/mm] + [mm]\summe_{k=1}^{\infty}\bruch{B}{8+k}[/mm]

Na, das ist heikel, das so zu schreiben ... bei unendlichen Summen ...

Besser nur mit dem Bruch:

[mm]\frac{1}{(7+k)(8+k)}=\frac{A}{7+k}+\frac{B}{8+k}[/mm]

>
> 1 = [mm]A\cdot{}(8+k)[/mm] + [mm]B\cdot{}(7+k)[/mm]
> 1 = 8A + 7B + k(A+B)
>
> [mm]k^{1}:[/mm]
> k(A+B) = 0
> A = -B
>
> [mm]k^{0}:[/mm]
> 8A + 7B = 1
> -8B + 7B = 1
> B = -1
>
> ----------
> B = -1
> A = +1 [ok]

gut!

>
> [mm]\summe_{k=1}^{\infty} \bruch{1}{(7+k)(8+k)}[/mm] = [mm]\summe_{k=1}^{\infty} \bruch{1}{7+k}[/mm] - [mm]\summe_{k=1}^{\infty}\bruch{1}{8+k}[/mm]

Ah, wieder heikel!

Schreibe besser [mm]\sum\limits_{k=1}^{\infty}\frac{1}{(7+k)(8+k)}=\sum\limits_{k=1}^{\infty}\left(\frac{1}{7+k}-\frac{1}{8+k}\right)[/mm]

>
> Ist das richtig soweit?
> Wie gehts jetzt weiter? Wie kann ich daraus die Summe
> berechnen?

Nun, nutze aus, dass [mm]\sum\limits_{k=1}^{\infty}a_k=\lim\limits_{n\to\infty}\underbrace{\sum\limits_{k=1}^{n}a_k}_{=:S_n}[/mm] ist, also der Reihenwert der Grenzwert der Partialsummenfolge ist.

Schreibe dir eine solche Partialsumme [mm]S_n[/mm] mal hin (mit ...), das gibt eine nette Teleskopsumme, in der sich ziemlich alles weghebt.

Dann [mm]n\to\infty[/mm]

Alternativ ziehe die endliche Summe [mm]S_n[/mm] auseinander, mache eine Ondexverschiebung, dann siehst du auch schnell, dass sich fast alles weghebt.


Am Ende wieder [mm]n\to\infty[/mm]

>
> Lg
>

Gruß

schachuzipus


Bezug
                
Bezug
Reihensumme Partialbruchzerl.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Do 09.12.2010
Autor: dreamweaver

Vielen Dank!

Zum Schluss hebt sich dann alles bis auf [mm] \bruch{1}{8} [/mm] weg.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]