www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihenwert bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Reihenwert bestimmen
Reihenwert bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Mo 08.06.2009
Autor: Blub2009

Aufgabe
Beise: das [mm] \summe_{n\ge1}^ [/mm] 1/n(n+1)  konvergiert und bestimme den Reihenwert.


Hallo um die Aufgabe zu Lösen habe ich erstmal eine Partialbruchzerlegung gemacht.

1/n(n+1)=A/n +Bn+C/n+1 =1/n + (-1)/n+1

Mir ist klar das ich um die Konv. zu zeigen einfach den Reihenwert ausrechen muss. Mein problem ist das ich bei der aufgabe Ka. habe wie das geht...




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Reihenwert bestimmen: Korrekturen
Status: (Antwort) fertig Status 
Datum: 13:40 Mo 08.06.2009
Autor: Roadrunner

Hallo Blub!


Um zu zeigen, dass diese Reihe überhaupt konvergiert, kannst Du z.B. das Majorantenkriterium anwenden.


Die Idee der Partialbruchzerlegung ist gut. Auch wenn Dein Ansatz nicht korrekt ist, stimmt (erstaunlicherweise) das Ergebnis.

Der Ansatz muss lauten:
[mm] $$\bruch{1}{n*(n+1)} [/mm] \ = \ [mm] \bruch{A}{n}+\bruch{B}{n+1}$$ [/mm]


Für die Ermittlung des Reihenwertes solltest Du Dir die ersten Glieder der Reihe aufschreiben und scharf ansehen. Hier eliminieren sich die meisten Summanden (es handelt sich um eine sog. "Teleskopsumme"), so dass der Grenzwert schnell zu ermitteln ist.


Gruß vom
Roadrunner


Bezug
                
Bezug
Reihenwert bestimmen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:53 Mo 08.06.2009
Autor: Blub2009

danke für den Tip ich habe es mal so versucht

Grenzwert

[mm] \limes_{n\rightarrow\infty} [/mm] 1/n - 1/(n+1) =(1/1 - 1/2)+(1/3 - 1/4)+(1/4 - 1/5)+...+1/n  - 1/(n+1)

[mm] \limes_{n\rightarrow\infty} [/mm] 1- 1/(n+1)=0

Majoranten-Kri.

wenn [mm] |an|\le [/mm] bn ist an. konv. wenn bn konv. ist

[mm] |1/n(n+1)|\le [/mm] 2/n(n+1) =2/n -2/n+1

[mm] \summe_{n\ge1}^ [/mm] (2/n-1) - 2/n= [mm] \limes_{n\rightarrow\infty} [/mm] (1-2)+(2/3 -1)+1/2 -2/3)+...+ (2/n+1 -2/n) [mm] \limes_{n\rightarrow\infty} [/mm] (2 -2/(n+1)=0 damit konv. und somit auch an

Bezug
                        
Bezug
Reihenwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Mo 08.06.2009
Autor: steppenhahn

Hallo!

> danke für den Tip ich habe es mal so versucht
>  
> Grenzwert
>  
> [mm]\limes_{n\rightarrow\infty}[/mm] 1/n - 1/(n+1) =(1/1 - 1/2)+(1/3
> - 1/4)+(1/4 - 1/5)+...+1/n  - 1/(n+1)

Eigentlich lautet es:

[mm] $\sum_{k= 1}^{infty} [/mm] = [mm] \left(\bruch{1}{1} - \bruch{1}{2}\right) [/mm] + [mm] \left(\bruch{1}{2} - \bruch{1}{3}\right) [/mm] + ...$

> [mm]\limes_{n\rightarrow\infty}[/mm] 1- 1/(n+1)=0

Die linke Seite ist richtig, letztendlich kann man schreiben:

[mm] $\lim_{n\to\infty}\sum_{k = 1}^{n}\bruch{1}{k*(k+1)} [/mm] = [mm] \lim_{n\to\infty}\left(1-\bruch{1}{n+1}\right) [/mm] = 1$

Da kommt aber 1 raus, nicht Null!  
Das reicht im Grunde, um zu zeigen, dass die Reihe konvergent ist, weil man ja eine Grenzwertberechnung durchführt.

> Majoranten-Kri.
>  
> wenn [mm]|an|\le[/mm] bn ist an. konv. wenn bn konv. ist
>  
> [mm]|1/n(n+1)|\le[/mm] 2/n(n+1) =2/n -2/n+1
>  
> [mm]\summe_{n\ge1}^[/mm] (2/n-1) - 2/n= [mm]\limes_{n\rightarrow\infty}[/mm]
> (1-2)+(2/3 -1)+1/2 -2/3)+...+ (2/n+1 -2/n)
> [mm]\limes_{n\rightarrow\infty}[/mm] (2 -2/(n+1)=0 damit konv. und
> somit auch an

Ich verstehe nicht wozu du die Abschätzung machst. Im Übrigen kann man mit einer Teleskopsumme verhältnismäßig wenig "beweisen". Wenn du schon weißt, dass [mm] \sum_{n=1}^{infty}\bruch{1}{n^{2}} [/mm] konvergiert, würde sich das als Majorante anbieten, ansonsten halte ich das Kriterium für ungeeignet (?).

Viele Grüße, Stefan.

Bezug
                                
Bezug
Reihenwert bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Mo 08.06.2009
Autor: Blub2009

danke für die antwort ich glaube das ich es jetzt verstanden habe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]