Reininseparabel < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:07 Fr 28.11.2008 | Autor: | Fry |
Hallo,
es geht um reininseparable Körpererweiterungen L/K.
[mm] a\in [/mm] L heißt ja reininseparabel über K wenn das f=Mipo von a über K reininseparbel ist, also nur eine einzige Nullstelle (in einem algebr. Abschluss) besitzt. Jetzt steht im Bosch, dass dies äquivalent zur Aussage ist, dass das Mipo über a über K die Form [mm] X^{p^r}-c [/mm] hat [mm] (p\in\IP,r\in \IN,c\inK)
[/mm]
Warum ist das so ?
Habe mir gedacht, dass ja f die Form [mm] f=(X-a)^{p^r} [/mm] haben muss, da ja logischerweise Nullstelle sein und in Charakteristik p jedes irreduzible Polynom f auch ein Polynom in [mm] X^{p^r} [/mm] ist, hat die Nullstelle die Vielfachheit [mm] p^r. [/mm] also [mm] f=(X-a)^{p^r} [/mm] = [mm] X^{p^r}-a^{p^r}.
[/mm]
Aber woher weiß ich denn jetzt überhaupt, dass [mm] a^{p^r} [/mm] in K liegt ?
Gruß
Christian
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:34 Fr 28.11.2008 | Autor: | felixf |
Hallo Christian
> es geht um reininseparable Körpererweiterungen L/K.
> [mm]a\in[/mm] L heißt ja reininseparabel über K wenn das f=Mipo von
> a über K reininseparbel ist, also nur eine einzige
> Nullstelle (in einem algebr. Abschluss) besitzt. Jetzt
> steht im Bosch, dass dies äquivalent zur Aussage ist, dass
> das Mipo über a über K die Form [mm]X^{p^r}-c[/mm] hat [mm](p\in\IP,r\in \IN,c\inK)[/mm]
>
> Warum ist das so ?
Sei [mm] $\varphi$ [/mm] das Minimalpolynom von $a$ ueber $K$. Ueber $L$ gilt ja [mm] $\varphi [/mm] = (x - [mm] a)^k$ [/mm] fuer ein $k [mm] \in \IN$. [/mm] Betrachte nun [mm] $\binom{k}{\ell}$ [/mm] fue r$1 [mm] \le \ell [/mm] < k$. Wenn $k$ eine Potenz von $p$ ist, ist das immer durch $p$ teilbar, womit $(x - [mm] a)^k [/mm] = [mm] x^k [/mm] - [mm] a^k$ [/mm] ist.
Ist $k$ dagegen keine Potenz von $p$, so hat es einen weiteren Primfaktor $q [mm] \neq [/mm] p$. Man kann jetzt zeigen, dass es ein [mm] $\ell$ [/mm] gibt mit [mm] $\binom{k}{\ell}$ [/mm] nicht durch $p$ teilbar: daraus folgt, dass auch [mm] $a^\ell \in [/mm] K$ ist, womit $k = [mm] \deg \varphi \le \ell [/mm] < k$ folgen wuerde, ein Widerspruch.
> Habe mir gedacht, dass ja f die Form [mm]f=(X-a)^{p^r}[/mm] haben
> muss, da ja logischerweise Nullstelle sein und in
> Charakteristik p jedes irreduzible Polynom f auch ein
> Polynom in [mm]X^{p^r}[/mm] ist,
Ich verstehe nicht ganz was du meinst...
> hat die Nullstelle die Vielfachheit
> [mm]p^r.[/mm] also [mm]f=(X-a)^{p^r}[/mm] = [mm]X^{p^r}-a^{p^r}.[/mm]
> Aber woher weiß ich denn jetzt überhaupt, dass [mm]a^{p^r}[/mm] in
> K liegt ?
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:25 Sa 29.11.2008 | Autor: | Fry |
Hi Felix,
danke für deine Antwort, aber das eigentliche Problem ist, dass ich nicht verstehe, warum [mm] a^{p^r}\in [/mm] K ? Denn die Darstellung von [mm] f=(X-a)^{p^r} [/mm] gilt ja streng erstmal nur für L[X], da ja [mm] a\in [/mm] L. Mir ist klar, dass [mm] (X-a)^{p^r}=X^{p^r}-a^{p^r} [/mm] gilt. Aber [mm] a^{p^r} [/mm] könnte ja auch genauso gut in L liegen. Oder hab ich die Antwort falsch verstanden ?
Grüße
Christian
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:50 Sa 29.11.2008 | Autor: | felixf |
Hallo Christian
> danke für deine Antwort, aber das eigentliche Problem ist,
> dass ich nicht verstehe, warum [mm]a^{p^r}\in[/mm] K ? Denn die
> Darstellung von [mm]f=(X-a)^{p^r}[/mm] gilt ja streng erstmal nur
> für L[X], da ja [mm]a\in[/mm] L. Mir ist klar, dass
> [mm](X-a)^{p^r}=X^{p^r}-a^{p^r}[/mm] gilt. Aber [mm]a^{p^r}[/mm] könnte ja
> auch genauso gut in L liegen.
Nun, in $L$ liegt es sowieso. Du meinst $L [mm] \setminus [/mm] K$, oder?
Das Minimalpolynom hat ja Koeffizienten aus $K$. Und da das Minimalpolynom $(X - [mm] a)^{p^r}= X^{p^r} [/mm] - [mm] a^{p^r}$ [/mm] ist, muss somit [mm] $a^{p^r}$ [/mm] ein Element aus $K$ sein.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:02 Sa 29.11.2008 | Autor: | Fry |
Ja, genau, das meinte ich...ok, dann hab ich mir wohl zu viele Gedanken gemacht ; ). Danke.
LG
Christian
|
|
|
|