www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenRekonstruktion von funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Steckbriefaufgaben" - Rekonstruktion von funktionen
Rekonstruktion von funktionen < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekonstruktion von funktionen: aufgabe 8
Status: (Frage) beantwortet Status 
Datum: 14:40 Mi 07.05.2008
Autor: leuchte

Aufgabe
Der Graph einer ganzrationalen Funktion dritten Grades ist punktsymmetrisch zum Ursprung und schneidet den Graphen von [mm] g(x)=0,5(4*x^3+x) [/mm] im Ursprung senkrecht. Ein zweiter Schittpunkt mit g liegt bei x=1. Wie lautet die Funktionsgleichung?

Ich habe diese frage in keinem forum auf anderen internetseiten gestellt.
hi,
ich habe ein kleines problem mit dieser aufgabe.also es sind ja nur noch a und c in der gleichung übrig,da sie punktsymmetrisch ist. ganz klar, nur jetzt verstehe ich nicht was die mit "im Ursprung senkrecht" meinen und meiner meinung nach habe ich ja gar nicht so viele bedingungen, wie mir hier angaben gemacht werden.ich hätte jetzt nur g(x) verrechnet,aber dann würde ich die restlichen angaben gar nicht brauchen und das kommt mir total komisch vor.ich hoffe mir kann jemand dabei helfen,da ich am freitag eine klausur schreibe.
dankeschön
gruß leuchte

        
Bezug
Rekonstruktion von funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Mi 07.05.2008
Autor: schachuzipus

Hallo Melanie,

> Der Graph einer ganzrationalen Funktion dritten Grades ist
> punktsymmetrisch zum Ursprung und schneidet den Graphen von
> [mm]g(x)=0,5(4*x^3+x)[/mm] im Ursprung senkrecht. Ein zweiter
> Schittpunkt mit g liegt bei x=1. Wie lautet die
> Funktionsgleichung?
>  Ich habe diese frage in keinem forum auf anderen
> internetseiten gestellt.
>  hi,
>  ich habe ein kleines problem mit dieser aufgabe.also es
> sind ja nur noch a und c in der gleichung übrig,da sie
> punktsymmetrisch ist. [daumenhoch]

genau, du hast also [mm] $f(x)=a\cdot{}x^3+c\cdot{}x$ [/mm]

> ganz klar, nur jetzt verstehe ich
> nicht was die mit "im Ursprung senkrecht" meinen und meiner
> meinung nach habe ich ja gar nicht so viele bedingungen,
> wie mir hier angaben gemacht werden.ich hätte jetzt nur
> g(x) verrechnet,aber dann würde ich die restlichen angaben
> gar nicht brauchen und das kommt mir total komisch vor.ich
> hoffe mir kann jemand dabei helfen,da ich am freitag eine
> klausur schreibe.
>  dankeschön
>  gruß leuchte


"Die Geraden schneiden sich im Ursprung senkrecht" beinhaltet 2 Informationen, zum einen ist der Ursprung, also der Punkt $U=(x/y)=(0/0)$ sowohl auf dem Graphen von g als auch auf dem von f!!

Dh. $g(0)=f(0)=0$

Dann sind in $U=(0/0)$ die Steigungen senkrecht, wie ist denn die Steigung $m$ in einem Punkt definiert? Denke mal an den Zusammenhang mit der Ableitung.

Du kannst also die Steigung von g im Urprung, also [mm] $m_g$ [/mm] berechnen, indem du ....

Die Steigung von f soll senkrecht dazu sein, also [mm] $m_f=-\frac{1}{m_g}$ [/mm]

Eine weitere Info steckt im letzen Teil: "Ein weiterer Schnittpunkt von f und g liegt bei x=1

Also ist der Punkt $P(1/g(1))$ auf beiden Graphen.

$g(1)$ kannst du berechnen, und damit kennst du auch den Funktionswert von f an der Stelle $x=1$, also $f(1)$.

Der muss ja derselbe sein wie $g(1)$

Kommst du damit erstmal weiter?

LG

schachuzipus





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]