www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieRektifizierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Rektifizierbar
Rektifizierbar < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rektifizierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Mo 09.05.2011
Autor: jacob17

Hallo miteinander,

Da ich mit Kurven leider noch nicht sehr vertraut bin meine Frage hierzu in der Hoffnung jemand von euch kann mir das erklären.
k:[0,1] [mm] \to IR^2 [/mm] mit
[mm] k(t)=\begin{cases} (t^2,t^2) , & \mbox{für } t\in (0,0,5] \\ (0,5-0,5t,0,5-0,5t), & \mbox{für } t \in (o,5,1] \mbox{ ungerade} \end{cases} [/mm] Nun soll überprüft werden, ob die Kurve auch rektifizierbar ist. Mein Ansatz wäre zunächst eine Folge von Zerlegungen des Intervalls (0,1] anzugeben. Doch welche eignet sich hierzu?  Und ist das überhaupt die richtige Vorgehensweise?
Viele Grüße
jacob

        
Bezug
Rektifizierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mo 09.05.2011
Autor: Al-Chwarizmi


> Hallo miteinander,
>  
> Da ich mit Kurven leider noch nicht sehr vertraut bin meine
> Frage hierzu in der Hoffnung jemand von euch kann mir das
> erklären.
>  k:[0,1] [mm]\to IR^2[/mm] mit
> [mm]k(t)=\begin{cases} (t^2,t^2) , & \mbox{für } t\in (0,0,5] \\ (0,5-0,5t,0,5-0,5t), & \mbox{für } t \in (o,5,1] \mbox{ ungerade} \end{cases}[/mm]
> Nun soll überprüft werden, ob die Kurve auch
> rektifizierbar ist. Mein Ansatz wäre zunächst eine Folge
> von Zerlegungen des Intervalls (0,1] anzugeben. Doch welche
> eignet sich hierzu?  Und ist das überhaupt die richtige
> Vorgehensweise?
>  Viele Grüße
>  jacob


Hallo jacob,

hast du dir die Kurve mal (vielleicht mittels
einer kleinen Wertetabelle) skizziert ?
Es handelt sich ja um eine eher merkwürdige
"Kurve" ...  eigentlich aber überaus simpel. Für
die Frage nach Rektifizierbarkeit muss man aber
wohl auf die exakte Definition des Begriffs
"rektifizierbar" achten. Meiner Ansicht nach kommt
es (insbesondere für die Festlegung einer Länge)
darauf an, ob man den Weg oder die durch
ihn erzeugte Kurve oder "Spur" rektifizieren
und messen will.

LG


Bezug
                
Bezug
Rektifizierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Mo 09.05.2011
Autor: jacob17

Vielen Dank für deine Antwort.
Angenommen ich möchte den Weg rektifizieren der diese Kurve erzeugt, wie wende ich dann die Definition an? Du hast von einer Wertetabelle gesprochen. Um diese Kurve zu zeichnen kann ich mir doch einfach Werte t aus dem Intervall [0,1] nehmen setze diese dann entweder in f1 oder f2 (also entweder oben oder unten ein) und erhalte dann Punkte im [mm] IR^2,oder? [/mm] Diese verbinde ich dann un erhalte meine Kurve. Kann man das so machen oder ist das zu einfach gedacht?
Viele Grüße
Jacob

Bezug
                        
Bezug
Rektifizierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 02:35 Di 10.05.2011
Autor: Al-Chwarizmi


> Vielen Dank für deine Antwort.
> Angenommen ich möchte den Weg rektifizieren der diese
> Kurve erzeugt, wie wende ich dann die Definition an? Du
> hast von einer Wertetabelle gesprochen. Um diese Kurve zu
> zeichnen kann ich mir doch einfach Werte t aus dem
> Intervall [0,1] nehmen setze diese dann entweder in f1 oder
> f2 (also entweder oben oder unten ein) und erhalte dann
> Punkte im [mm]IR^2,oder?[/mm] Diese verbinde ich dann un erhalte
> meine Kurve. Kann man das so machen oder ist das zu einfach
> gedacht?

Ja. Für eine Skizze reicht dies durchaus. Du merkst
daran auch sofort, wie der beschriebene Weg aussieht,
und es wird klar, wie er durchlaufen wird.

>  Viele Grüße
>  Jacob

LG   Al-Chw.


Bezug
        
Bezug
Rektifizierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Mo 09.05.2011
Autor: Snarfu

Hallo,

Dein Ansatz ist zwar theoretisch Richtig aber du müsstest dann ja zeigen das deine Kurve für ALLE möglichen Zerlegungen des Intervalls [0..1] beschränkte Länge hat...

Ich nehme mal an du hast die Aufgabe im Rahmen der Übung zu einer Vorlesung bekommen und kannst deswegen auf ein paar Sätze zurückgreifen.

Vielleicht ist einer dabei der so etwas ähnliches aussagt wie:

      Sei I=[a,b] und [mm] c\in C^0(I,\IR^n) [/mm] stückweise [mm] C^1 \Rightarrow [/mm] c ist rektifizierbar.

Damit ginge das glaube ich ganz fix :-)


Herzliche Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]