www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenRekursive Folgen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Rekursive Folgen
Rekursive Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursive Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 So 03.02.2013
Autor: Aguero

Aufgabe
Sei [mm] (a_{n}) [/mm] eine rekursiv definierte Folge reeler Zahlen
[mm] a_{1} [/mm] = 1
und
[mm] a_{n+1} [/mm] = [mm] \wurzel{a_{n} +6} [/mm]

a) Zeigen sie durch vollständige Induktion [mm] a_{n} \in [/mm] (0,3]
b) Zeigen sie, Dass [mm] a_{n} [/mm] monoton steigend ist und schließen sie auf Konvergenz
c)Bestimmen sie den Grenzwert der Folge [mm] a_{n} [/mm]

a)
um dieses zu Zeigen, brauche ich doch erst eine geschlossene Formel oder?
kriege diese leider nicht gebacken.
falls ich diese nicht brauche, weiß ich nicht wie ich es sonst machen sollte.
ich habe ja a1 = 1 und das ist in dem intervall auf jedem fall.
aber es muss ja nicht heißen dass  [mm] a_{n+1} [/mm] direkt nach a1 kommt und deshalb kann a1 nicht meine induktionsvoraussetzung sein oder?

b) damit es steigend ist muss
[mm] a_{n+1} \le a_{n+2} [/mm] gelten. und somit 0 [mm] \le a_{n+2} [/mm] - [mm] a_{n+1} [/mm]
das geht bei mir leider nicht auf (

c)
der Grenzwert ist ganz klar die 3. jedoch keine ahung wie ich es bestimmen soll wenn ich keine geschlossene formel habe.
mich wundert es auch warum die 3] dort steht und nicht 3).
meines wissens nach wird die 3 doch garnicht erreicht oder?


Danke!

        
Bezug
Rekursive Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 So 03.02.2013
Autor: Marcel

Hallo,

> Sei [mm](a_{n})[/mm] eine rekursiv definierte Folge reeler Zahlen
> [mm]a_{1}[/mm] = 1
>  und
>  [mm]a_{n+1}[/mm] = [mm]\wurzel{a_{n} +6}[/mm]
>  
> a) Zeigen sie durch vollständige Induktion [mm]a_{n} \in[/mm]
> (0,3]
>  b) Zeigen sie, Dass [mm]a_{n}[/mm] monoton steigend ist und
> schließen sie auf Konvergenz
>  c)Bestimmen sie den Grenzwert der Folge [mm]a_{n}[/mm]
>  a)
>  um dieses zu Zeigen, brauche ich doch erst eine
> geschlossene Formel oder?

nein:

I.A.: Offenbar ist [mm] $a_1=1 \in (0,3]\,,$ [/mm] denn es ist $0 < 1 [mm] \le 3\,.$ [/mm]

I.S.: Wir haben die Induktions-Voraussetzung: Sei $n [mm] \in \IN$ [/mm] mit [mm] $a_n \in (0,3]\,,$ [/mm]
und zu zeigen ist nun, dass aus [mm] $a_n \in (0,\red{3}]$ [/mm] auch [mm] $a_{n+1} \in [/mm] (0,3]$ folgt.
(Es sind also $0 < [mm] a_{n+1}$ [/mm] und [mm] $a_{n+1} \le [/mm] 3$ zu beweisen!)

Dies geht etwa so: Es gilt
[mm] $$a_{n+1}=\sqrt{a_n+6}$$ [/mm]
und damit ist wegen [mm] $a_n [/mm] > 0$ einerseits sicher [mm] $a_{n+1} [/mm] > [mm] \sqrt{0+6}=\sqrt{6} [/mm] > [mm] 0\,,$ [/mm]
und andererseits ist [mm] $\sqrt{a_n+6} \le \sqrt{\red{\text{?}}+6}\,.$ [/mm]
Was kann man wohl für [mm] $\red{\text{?}}$ [/mm] einsetzen (nach I.V. - übrigens
wird oben die ('steigende') Monotonie der Wurzelfunktion [mm] $\sqrt{\;\cdot}\colon [0,\infty) \to [0,\infty)$ [/mm]
ausgenutzt!).

>  kriege diese leider nicht gebacken.
> falls ich diese nicht brauche, weiß ich nicht wie ich es
> sonst machen sollte.
>  ich habe ja a1 = 1 und das ist in dem intervall auf jedem
> fall.
> aber es muss ja nicht heißen dass  [mm]a_{n+1}[/mm] direkt nach a1
> kommt und deshalb kann a1 nicht meine
> induktionsvoraussetzung sein oder?

Nein: Induktionsbeweise bestehen aus dem

    INDUKTIONSANFANG

und dem

    INDUKTIONSSCHRITT.
  

> b) damit es steigend ist muss
> [mm]a_{n+1} \le a_{n+2}[/mm] gelten. und somit 0 [mm]\le a_{n+2}[/mm] -
> [mm]a_{n+1}[/mm]
>  das geht bei mir leider nicht auf (

Rechne mal vor, was Du meinst. Du kannst zeigen, dass [mm] $(a_n)_n$ [/mm] monoton
steigt, indem Du

    [mm] $(\*_1)$ $a_{n+1}-a_n \ge [/mm] 0$ für ALLE $n [mm] \in \IN$ [/mm]

oder

    [mm] $(\*_2)$ $\frac{a_{n+1}}{a_n} \ge [/mm] 1$ für ALLE $n [mm] \in \IN$ [/mm]

nachzurechnen (=zu begründen) versuchst: Es reicht, [mm] $(\*_1)$ [/mm] ODER [mm] $(\*_2)$ [/mm]
durchzuführen - Du musst also nicht beide nachrechnen! (Zudem solltest
Du hier mal genau begründen, warum [mm] $(\*_2)$ [/mm] HIER in dieser Formulierung
so funktioniert - dabei ist es nämlich auch wichtig, dass die [mm] $a_n$ [/mm] nicht negativ
werden...)
  

> c)
>  der Grenzwert ist ganz klar die 3. jedoch keine ahung wie
> ich es bestimmen soll wenn ich keine geschlossene formel
> habe.

Na, wenn [mm] $(a_n)_n$ [/mm] konvergiert, es heiße der Grenzwert [mm] $a\,,$ [/mm] dann gilt
doch [mm] $a=\lim_{n \to \infty}a_n=\lim_{n \to \infty}a_{n+1}\,.$ [/mm] (Beweis?)

Warum konvergiert nun die Dir hier vorgelegte Folge [mm] $(a_n)_n$? [/mm] (Im Teil
b) sollst Du ja "monoton steigend" beweisen, in Teil a) hast Du insbesondere
"nach oben beschränkt" gezeigt: Sagt Dir der Haupsatz über monotone
Folgen was?)

Lasse mal bei
[mm] $$a_{n+1}=\sqrt{a_n+3}$$ [/mm]
auf beiden Seiten $n [mm] \to \infty$ [/mm] laufen - es folgt eine
"Bestimmungsgleichung" für [mm] $a\,.$ [/mm] (Eine quadratische Gleichung, von der
aber nur eine Lösung für [mm] $a\,$ [/mm] in Frage kommt: Welche und warum?)
Dabei ist zu beachten, dass man, wenn [mm] $b_n \to [/mm] b > 0$ gilt, auch [mm] $\lim_{n \to \infty}\sqrt{b_n}=\sqrt{\lim_{n \to \infty}b_n}$ [/mm]
benutzt werden DARF (das ist NICHT-TRIVIAL!), und es ist halt dann
[mm] $\sqrt{\lim_{n \to \infty}b_n}=\sqrt{b}\,.$ [/mm]

>  mich wundert es auch warum die 3] dort steht und nicht
> 3).
>  meines wissens nach wird die 3 doch garnicht erreicht
> oder?

Na und? Zum einen: Wenn $x < [mm] 3\,$ [/mm] ist, folgt auch stets, dass

    $x <3$ ODER [mm] $x=3\,$ [/mm]

ist: Also $x < 3 [mm] \Rightarrow [/mm] x [mm] \le 3\,.$ [/mm]

Ferner kann man nur sagen:
Ist [mm] $(b_n)_n$ [/mm] eine Folge mit [mm] $b_n [/mm] < M$ für alle [mm] $n\,,$ [/mm] so gilt, falls [mm] $b_n$ [/mm] gegen [mm] $b\,$ [/mm] konvergiert,
dass der Grenzwert $b [mm] \red{\;\le\;}M$ [/mm] ist (Beweis?): Dabei kann man $b [mm] \le [/mm] M$ NICHT durch $b < [mm] M\,$ [/mm] ersetzen!

Standardbeispiel: $1 > 1-1/n [mm] \to [/mm] 1$ bei $n [mm] \to \infty\,.$ [/mm]

Gruß,
  Marcel

Bezug
                
Bezug
Rekursive Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Mo 04.02.2013
Autor: Aguero

b)

[mm] a_{n+1} [/mm] - [mm] a_{n} \ge [/mm] 0
wäre es dann nach der voraussetzung
[mm] \wurzel{1+6} [/mm] - 1 = [mm] \wurzel{7} [/mm] - 1 [mm] \ge [/mm] 0
und dass dies stimmt, ist wohl trivial.

=> es ist monoton steigend.
dazu ist es beschränkt durch 3]
=> es konvergiert

a)
"und andererseits ist $ [mm] \sqrt{a_n+6} \le \sqrt{\red{\text{?}}+6}\,. [/mm] $
? [mm] a_{n+1} [/mm] , da monoton steigend

also ist insgesamt zu zeigen, dass an+1 auch im intervall (0,3] liegt, ja?

c)
ich weiß was du meinst jedoch weiß ich nicht wie ich das kurz und knapp zusammenfassen soll.
ist mir ein bisschen durcheinander

Bezug
                        
Bezug
Rekursive Folgen: zu b.)
Status: (Antwort) fertig Status 
Datum: 13:27 Mo 04.02.2013
Autor: Loddar

Hallo Aguero!


Kümmern wir uns zunächst um Teilaufgabe b.) bezüglich der Monotonie.


> [mm]a_{n+1}[/mm] - [mm]a_{n} \ge[/mm] 0
>  wäre es dann nach der voraussetzung
> [mm]\wurzel{1+6}[/mm] - 1 = [mm]\wurzel{7}[/mm] - 1 [mm]\ge[/mm] 0
>  und dass dies stimmt, ist wohl trivial.

Hier zeigst Du ja "nur" den Induktionsanfang und den Wahrheitsgehalt der Ungleichung [mm]a_{n+1}-a_n \ \ge \ 0[/mm] für den speziellen Fall [mm]n \ = \ 1[/mm].


> => es ist monoton steigend.

Daraus kannst Du doch noch lange nicht die Gültigkeit obiger Ungleichung für alle anderen [mm]n_[/mm] folgern.

Gemäß Induktionsvoraussetzung gilt nun [mm]a_{n+1}-a_n \ \ge \ 0[/mm] .

Im Induktionsschritt ist nunmehr unter Verwendung der Induktionsvoraussetzung zu zeigen, dass gilt: [mm]a_{n+2}-a_{n+1} \ \ge \ 0[/mm] .


[mm]a_{n+2}-a_{n+1} \ = \ \wurzel{a_{n+1}+6}-\wurzel{a_n+6} \ = \ ... \ [/mm]

Zum Umformen verwende denselben Trick mit Erweitern zu einer 3. binomischen Formel wie unten.




Alternativ kann man hier auch ohne Induktion vorgehen:

[mm]a_{n+1}-a_n \ = \ \wurzel{a_n+6}-a_n \ = \ \left( \ \wurzel{a_n+6}-a_n \ \right)*\bruch{\wurzel{a_n+6}+a_n}{\wurzel{a_n+6}+a_n} \ = \ \bruch{\left( \ \wurzel{a_n+6}-a_n \ \right)*\left( \ \wurzel{a_n+6}+a_n \ \right)}{\wurzel{a_n+6}+a_n} \ = \ \bruch{ a_n+6-a^2_n}{\wurzel{a_n+6}+a_n} \ = \ ... \ = \ \bruch{ \left(3-a_n)*(a_n+2)}{\wurzel{a_n+6}+a_n}[/mm]

Nun verwende, dass gilt [mm]a_n \ \in \ (0;3][/mm] , um den gesamten Bruch abzuschätzen.


Gruß
Loddar


Bezug
                        
Bezug
Rekursive Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Mo 04.02.2013
Autor: Marcel

Hallo,

Frage generell: Was machst Du hier überhaupt?

> b)
>  
> [mm]a_{n+1}[/mm] - [mm]a_{n} \ge[/mm] 0
>  wäre es dann nach der voraussetzung
> [mm]\wurzel{1+6}[/mm] - 1 = [mm]\wurzel{7}[/mm] - 1 [mm]\ge[/mm] 0
>  und dass dies stimmt, ist wohl trivial.
>  
> => es ist monoton steigend.
> dazu ist es beschränkt durch 3]
> => es konvergiert

Immer dieses "es" - das ist eine Folge, kein "[]es". Ich hab' Dir doch gesagt,
was Du machen sollst. Denk' mal drüber nach. Du kannst, wie Loddar es
vorschlägt, auch "Monotonie" mit Induktion beweisen. Aber warum denn?

Es gilt
[mm] $$a_{n+1} \ge a_n \iff \frac{a_{n+1}}{a_n} \ge 1\,,$$ [/mm]
weil hier [mm] $a_n [/mm] > [mm] 0\,$ [/mm] für alle $n [mm] \in \IN$ [/mm] gilt.

Nun ist (beachte [mm] $a_n=|a_n|$) [/mm]
[mm] $$\frac{a_{n+1}}{a_n}=\frac{\sqrt{a_n+6}}{a_n}=\sqrt{\frac{1}{a_n}+\frac{6}{{a_n}^2}}\,,$$ [/mm]
und es gilt
[mm] $$\sqrt{\frac{1}{a_n}+\frac{6}{{a_n}^2}} \ge [/mm] 1 [mm] \iff \frac{1}{a_n}+\frac{6}{{a_n}^2} \ge 1\,.$$ [/mm]
Es reicht also:
[mm] $$\frac{1}{a_n}+\frac{6}{{a_n}^2} \ge [/mm] 1$$
zu beweisen. Dabei hilft wiederum
[mm] $$\frac{1}{a_n}+\frac{6}{{a_n}^2} \ge [/mm] 1 [mm] \iff {a_n}^2-a_n-6 \le [/mm] 0 [mm] \iff (a_n-\tfrac{1}{2})^2-\tfrac{25}{4} \le 0\,.$$ [/mm]
Es reicht nun nämlich, die LETZTE Ungleichung zu beweisen, wobei man
natürlich $0 < [mm] a_n \le [/mm] 3$ benutzen sollte:
Aus $0 < [mm] a_n \le [/mm] 3$ folgt insbesondere
$$0 [mm] \le |a_n-\tfrac{1}{2}| \le \tfrac{5}{2}$$ [/mm]
und damit ergibt sich...?
  

> a)
>  "und andererseits ist [mm]\sqrt{a_n+6} \le \sqrt{\red{\text{?}}+6}\,.[/mm]
>  
> ? [mm]a_{n+1}[/mm] , da monoton steigend
>  
> also ist insgesamt zu zeigen, dass an+1 auch im intervall
> (0,3] liegt, ja?

??? Warum habe ich wohl bei meiner Antwort [mm] $(0,\red{3}]$ [/mm] irgendwo
stehen, und frage Dich dann, was [mm] $\red{\text{?}}$ [/mm] wohl sein kann? Um's
noch deutlicher zu machen: [mm] $3=\sqrt{9}=\sqrt{\red{3}+6}$. [/mm]

Aus $0 < [mm] a_n \le \red{3}$ [/mm] folgt also auch
[mm] $$a_{n+1}=\sqrt{a_n+6} \le \sqrt{\red{\text{?}}+6}=\sqrt{9}=3\,,$$ [/mm]
wobei man nun für [mm] $\red{\text{?}}$ [/mm] dort WAS einzusetzen hat?
  

> c)
>  ich weiß was du meinst jedoch weiß ich nicht wie ich das
> kurz und knapp zusammenfassen soll.
>  ist mir ein bisschen durcheinander

??

Nehmen wir nun mal an, Du bekommst a) und b) komplett und richtig
gelöst (ich bitte Dich, Deine Lösung mal selbst hier zusammenzuschreiben,
denn andernfalls sieht kein Mensch, ob Du das nun wirklich verstanden
hast; bisher sieht das leider eher nicht so aus, was aber nicht heißt, dass
es nun nicht vielleicht doch noch "klick" gemacht hat - schlimmstenfalls
schreibe ich Dir das mal komplett hin, damit Du eine Musterlösung solch'
einer Aufgabe mal gesehen hast, was nicht unwichtig ist!):

Sei [mm] $a:=\lim_{n \to \infty} a_n\,,$ [/mm] dann gilt auch [mm] $a=\lim_{n \to \infty} a_{n+1}$ [/mm] (Nach wie vor: Beweis der letzten Aussage?)

Aus
[mm] $$a_{n+1}=\sqrt{a_n+6}$$ [/mm]
folgt
[mm] $$\lim_{n \to \infty}a_{n+1}=\lim_{n \to \infty}\sqrt{a_n+6}\,.$$ [/mm]

Daraus folgt dann sofort
[mm] $$a=\lim_{n \to \infty}\sqrt{a_n+6}\,,$$ [/mm]
und der NICHTTRIVIALE Schritt passiert nun:
[mm] $$a=\sqrt{\lim_{n \to \infty}(a_n+6)}\,.$$ [/mm]

Wie geht's weiter?

P.S. Irgendwann solltest Du zur "Bestimmungsgleichung"
[mm] $$a^2=a+6 \iff a^2-a-6=0$$ [/mm]
gelangen, diese mit der pq-Formel lösen und dann überlegen, dass aber
$a=-2 < [mm] 0\,$ [/mm] nicht sein kann, also muss $a=...$

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]