www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraRelation und Ur-Paare
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Relation und Ur-Paare
Relation und Ur-Paare < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation und Ur-Paare: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 So 27.11.2005
Autor: alicante1986

Für jede Relation R sei R* die Menge aller Ur-Paare p, für die gilt:

[mm] p_{1} \in [/mm] V(R) (--> Vorbereich der Relation R),  [mm] p_{2} [/mm] = [mm] [p_{1}]_{R}. [/mm] Man zeige, dass R* eine Funktion ist, und man beweise:

Sind R, S Relationen mit R* = S*, so ist R = S

Kann mir jemand dabei helfen???

Ich habe diese Frage noch in keinem anderen Forum gestellt!

        
Bezug
Relation und Ur-Paare: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mo 28.11.2005
Autor: angela.h.b.


> Für jede Relation R sei R* die Menge aller Ur-Paare p, für
> die gilt:
>
> [mm]p_{1} \in[/mm] V(R) (--> Vorbereich der Relation R),  [mm]p_{2}[/mm] =
> [mm][p_{1}]_{R}.[/mm] Man zeige, dass R* eine Funktion ist, und man
> beweise:
>  
> Sind R, S Relationen mit R* = S*, so ist R = S
>  
> Kann mir jemand dabei helfen???

Einen schönen guten Tag,

gehe ich recht in der Annahme, daß R nicht einfach irgendeine Relation sein soll, sondern eine Äquivalenzrelation? Einiges deutet darauf hin, ich gehe mal davon aus.

Worum es in dieser Aufgabe geht, ist folgendes:
Auf einer Menge X hat man eine Äquivalenzrelation gegeben.

Nun def. man eine Zuordnung R* von X in die Menge aller Äquivalenzklassen  von X (geschrieben X/R), welche jedem x [mm] \in [/mm] X seine Äquivalenzklaase [mm] [x]_R [/mm] bzgl. R zuordnet.

Also:            R*: X [mm] \in [/mm] X/R  
def. durch   [mm] R*(x):=[x]_R [/mm]

Es soll gezeigt werden, daß dieses eine Abbildung ist.
Dazu muß man sich überzeigen, daß tatsächlich jedem Element der Startmenge einElement der Zielmenge zugeordnet wird, das ist sofort klar.

Worüber man nachzudenken hat, ist, ob diese Zuordnung eindeutig ist. D.h., ob aus x=x' folgt, daß R*(x)=R*(x'), oder anders:  R*(x) [mm] \not= [/mm] R*(x') ==> x [mm] \not=x' [/mm]

Hierzu muß man wissen, daß zwei Äquivalenzklassen entweder gleich sind oder elementfremd.


Der zweite Teil der Aufgabe lautet in Worten: wenn die die Aquivalenzklassen zweier Äquivalenzrelationen auf einer Menge X für alle x [mm] \in [/mm] X gleich sind, sind die Relationen gleich.

Gruß v. Angela








Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]