Relationen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei A eine Menge und n [mm] \in \IN.
[/mm]
a) Begründe, warum es eine kleinste Äquivalenzrelation (ÄR) [mm] \sim [/mm] auf [mm] A^{n} [/mm] gibt mit
[mm] (a_{1}, a_{2}, [/mm] ..., [mm] a_{n}) \sim (a_{2}, [/mm] ..., [mm] a_{n}, a_{1})
[/mm]
für alle [mm] a_{1}, [/mm] ..., [mm] a_{n} \in [/mm] A.
b) Begründe, warum es eine kleinste Äquivalenzrelation [mm] \approx [/mm] auf [mm] A^{n} [/mm] gibt mit
[mm] (a_{1}, a_{2}, [/mm] ..., [mm] a_{n}) \approx (a_{2}, [/mm] ..., [mm] a_{n}, a_{1}) [/mm] und [mm] (a_{1}, a_{2}, [/mm] ..., [mm] a_{n}) \approx (a_{n}, [/mm] ..., [mm] a_{2}, a_{1})
[/mm]
für alle [mm] a_{1}, [/mm] ..., [mm] a_{n} \in [/mm] A.
c) Begründe, warum man die Elemente der Quotientenmenge [mm] A^{n}/\sim [/mm] getragene Halsketten der Lange n über A nennt.
d) Begründe, warum man die Elemente der Quotientenmenge [mm] A^{n}/\approx [/mm] ungetragene Halsketten der Lange n über A nennt.
e) Bestimme jeweils die Anzahl der getragenen und ungetragenen Halsketten der Länge 6 über einer zweielementigen Menge. |
Hallo zusammen,
habe bereits mit dem zweiten Blatt bei LinA1 zu kämpfen, will aber von Anfang an dran bleiben. Eine andere Aufgabe zu Relationen war mir eigentlich schnell relativ klar, nur hier weiss ich gar nicht wo/wie ich anfangen soll.
Wäre super, wenn mir jemand den ersten Schritt zeigen könnte, dann probieren ich weiter.
Merci!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:02 Do 07.11.2013 | Autor: | hippias |
Wie lautet die Definition von Aequivalenzrelation? Ist die Relation [mm] $\sim$ [/mm] eine solche? Was habt ihr zu kleinsten Aequivalenzrelationen gesagt? Man koennte auch sagen, es ist die von [mm] $\sim$ [/mm] erzeugte Aequivalenzrelation gesucht.
|
|
|
|
|
Also eine ÄR ist eine Relation mit den drei Eigenschaften, reflexiv, symmetrisch und transitiv. Der Aufgabenstellung zufolge ist a) mit Sicherheit eine ÄR, ich weiss aber nicht wirklich wieso. Und versteh auch nicht, wie ich den Vektor a1, a2, ..., an lesen soll... Also mein Problem ist glaube ich, dass die Relation nicht konkret ist. Also dass es nicht heißt Relation a1 < a2 oder so....
Zudem weiß ich nicht was gemeint ist mit einer "kleinsten" ÄR. Finde das in meinem Skript auch nicht.
Wäre über weitere Hilfe dankbar. Bzw. eine Art Anleitung wie man z.B. bei der a) vorgeht. Habe dann mit b), c), ... ja noch genug :/
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:03 Do 07.11.2013 | Autor: | hippias |
Also [mm] $\sim$ [/mm] ist keine Aequivalenzrelation, denn sie erfuellt die $3$ genannten Eigenschaften nicht. Wenn sie eine waere, waere sie selbst die kleinste Aequivalenzrelation, die sie enthaelt.
Wie Du weisst ist eine Relation eine Menge von Tupeln. Bei einer Menge von Paaren, wird gerne die binaere Schreibweise verwendet (z.B. [mm] $a\sim [/mm] b$). Das ist bei Dir der Fall: Tupel [mm] $\sim$ [/mm] Tupel.
Wenn [mm] $\IN^{3}$ [/mm] die Grundmenge ist, also $n= 3$, dann waere z.B. [mm] $(1,2,3)\sim (2,3,1)\sim [/mm] (3,2,1)$ etc. Oder anders gesagt $((1,2,3), [mm] (2,3,1))\in \sim$, [/mm] $((2,3,1), [mm] (3,2,1))\in \sim$, [/mm] denn [mm] $\sim$ [/mm] ist eigentlich eine Menge von Paaren von Tupeln. Deine Relation koennte man die Relation der zyklischen Verschiebung nennen oder so.
Dass nichts zur kleinsten Aequivalenzrelation in Deinem Skript steht, muss ich wohl glauben. Es ist so: Der Durchschnitt von Aequivalenzrelationen ueber der gleichen Grundmenge ist wieder eine Aequivalenzrelation (beweise dies, wenn's nicht im Skript ist). Der Durchschnitt aller Aequivalenzrelationenen, die [mm] $\sim$ [/mm] enthalten ist die sog. kleinste Aequivalenzrelation, die [mm] $\sim$ [/mm] enthaelt.
Etwas anschaulicher: Stell Dir vor [mm] $a\sim [/mm] b$ heisst, dass man von $a$ nach $b$ gehen kann. Dann definiere eine neue Relation [mm] $\approx$, [/mm] wobei [mm] $x\approx [/mm] y$ gelten soll, wenn es in diesem Sinne einen Pfad von $x$ nach $y$ gibt.
Dann kannst Du zeigen, dass [mm] $\approx$ [/mm] eine Aequivalenzrelation ist, die sogar die kleinste ist, die [mm] $\sim [/mm] $ enthaelt.
|
|
|
|