www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenRelationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Relationen" - Relationen
Relationen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 So 08.12.2013
Autor: Meritseger

Aufgabe
Zeige (ohne Wahrheitstafel): Für (zweistellige) Relationen R,S und T in einer nicht-leeren Menge gilt:

a)  (R\ [mm] S)^{-1} [/mm] = [mm] R^{-1} [/mm] \ [mm] S^{-1} [/mm]
b)  [mm] R\circ (S\circ [/mm] T) = [mm] (R\circ S)\circ [/mm] T
c)  [mm] R\circ (S\cap T)\subseteq (R\circ [/mm] S) [mm] \cap (R\circ [/mm] T)
d)  R ist symmetrisch [mm] \gdw R\subseteq R^{-1}\gdw [/mm] R= [mm] R^{-1} [/mm]

Guten Morgen,

ich benötige Hilfe bei dieser Aufgabe.
Mein Problem ist vor allem, dass ich nicht weiß wie ich das aufschreiben soll.
Bei Aufgabenteil d, habe ich leider gar keine Idee.

Vielleicht kann mit jemand einen Hinweis geben. Oder ein Beispiel.

Vielen Dank im Voraus

Meritseger

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 So 08.12.2013
Autor: wieschoo

Du hast doch laut irgendeiner Mitschrift die Definition einer Relation.
Meinetwegen: Sei [mm]X[/mm] eine Menge mit einer Relation [mm]R[/mm]. Dann ist
[mm]R=\{(a,b)\in X\times X\text{ mit }aRb\}[/mm] und
[mm]R^{-1}=\{(a,b)\in X\times X\text{ mit }bRa\}[/mm].

zur d) Eine Realtion heißt symmetrisch, falls für alle $a,b$ gilt [mm] $aRb\implies [/mm] bRa$. Nun sei $(a,b) [mm] \in [/mm] R$. Dann gilt
[mm] $(a,b)\in [/mm] R [mm] \iff \ldots \ldots \iff [/mm] $ R symmetrisch.

Ich weiß nicht, wie bei dir [mm] $R\circ [/mm] S$ definiert wurde. Aber die anderen Aufgaben gehen analog.

Beachte, dass Relation Teilmengen von einem kartesischen Produkt sind. Du musst also eine Mengengleichheit beweisen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]