www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreRelationen: Inverse&Komplement
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mengenlehre" - Relationen: Inverse&Komplement
Relationen: Inverse&Komplement < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Inverse&Komplement: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Mo 14.01.2008
Autor: Quadral

Aufgabe
Gilt immer

[mm] $(R')^{1} [/mm] = [mm] (R^{1})'$ [/mm]

?

Hallo Leute,

ich bin mir nicht sicher, ob diese Frage hierher gehört, und wahrscheinlich ist es auch eine blöde Frage, aber ist die Inverse des Komplements einer Relation immer auch das Komplement der Inverse dieser Relation?

Danke,
QUadrAL

        
Bezug
Relationen: Inverse&Komplement: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Di 15.01.2008
Autor: Somebody


> Gilt immer
>  
> [mm](R')^{1} = (R^{1})'[/mm]
>  
> ?
>  Hallo Leute,
>  
> ich bin mir nicht sicher, ob diese Frage hierher gehört,
> und wahrscheinlich ist es auch eine blöde Frage, aber ist
> die Inverse des Komplements einer Relation immer auch das
> Komplement der Inverse dieser Relation?

Ich denke ja. Zunächst eine anschauliche Überlegung: Eine zweistellige Relation wie $R$ kann man sich als Punktmenge in der Ebene [mm] $\IR^2$ [/mm] vorstellen. Das Komplement $R'$ bestände dann aus allen Punkten der Ebene, die nicht zur Figur $R$ gehören ("Hintergrund"). Beim Übergang zur Inversen [mm] $R^{-1}$ [/mm] wird $R$ an der $x=y$ Achse gespiegelt ($x$ und $y$ Koordinate der Punkte von $R$ werden vertauscht). Die Behauptung gilt genau dann, wenn stets der Hintergrund [mm] $(R^{-1})'$ [/mm] der an $x=y$ gespiegelten Relation $R$ die an $x=y$ gespiegelte Punktmenge $R'$, also [mm] $(R')^{-1}$, [/mm] ist.

Anschaulich leuchtet (mir) dies ein - nun müsste man es noch formal zeigen. Vielleicht so: es ist einerseits [mm] $R'=\{(x,y)\mid (x,y)\notin R\}$ [/mm] und daher [mm] $(R')^{-1}=\{(y,x)\mid (x,y)\in R'\mid\}=\{(y,x)\mid (x,y)\notin R\}$. [/mm]
Andererseits ist [mm] $R^{-1}=\{(y,x)\mid (x,y)\in R\}$ [/mm] und daher [mm] $(R^{-1})'=\{(x,y)\mid (x,y)\notin R^{-1}\}=\{(x,y)\mid (y,x)\notin R\}$. [/mm]

Damit haben wir gezeigt:

[mm](R')^{-1}=\{(y,x)\mid (x,y)\notin R\}\red{=}\{(x,y)\mid (y,x)\notin R\}=(R^{-1})'[/mm]

Das rot markierte Gleichheitzeichen gilt, weil die beiden Mengen linnks und rechts davon durch blosses Vertauschen ("Umbenennen")der Variablen x,y in einander übergeführt werden.

Bezug
                
Bezug
Relationen: Inverse&Komplement: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 So 20.01.2008
Autor: Quadral

Hallo Somebody,

ich weiß nicht, ob das mit den Punktmengen richtig verstanden habe, aber das andere leuchtet mir doch sehr ein.
Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]