www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenRelationen auf \IZ
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Relationen" - Relationen auf \IZ
Relationen auf \IZ < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen auf \IZ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Di 20.11.2007
Autor: muy

Aufgabe
a) Auf der Menge [mm] \IZ [/mm] sei eine Relation R erklärt durch (x,y) [mm] \in [/mm] R [mm] \gdw [/mm] xy [mm] \ge [/mm] 0. Ist R eine Äquivalenzrelation? (mit Beweis)
b) Auf der Menge [mm] \IZ [/mm] \ {0} sei eine Relation S erklärt durch (x,y) [mm] \in [/mm] S [mm] \gdw [/mm] xy > 0. Ist S eine Äquivalenzrelation? (mit Beweis)
c) Falls bei a) oder b) eine Äquivalenzrelation vorliegt, geben Sie die zugehörigen Äquivalenzklassen an.

Kann mir jemand die Aufgabe erklären? Ich habe noch nicht einmal eine Idee was man von mir will, geschweige denn eine Idee für eine Lösung... :(

Was genau bedeutet denn zum Beispiel diese Erklärung der Relation...? Und was soll es ändern, wenn auf [mm] \IZ [/mm] \ {0} xy > 0 ist...?

Hilfe. [mm] :\ [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Relationen auf \IZ: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Di 20.11.2007
Autor: angela.h.b.


> a) Auf der Menge [mm]\IZ[/mm] sei eine Relation R erklärt durch
> (x,y) [mm]\in[/mm] R [mm]\gdw[/mm] xy [mm]\ge[/mm] 0. Ist R eine Äquivalenzrelation?
> (mit Beweis)
>  b) Auf der Menge [mm]\IZ[/mm] \ {0} sei eine Relation S erklärt
> durch (x,y) [mm]\in[/mm] S [mm]\gdw[/mm] xy > 0. Ist S eine
> Äquivalenzrelation? (mit Beweis)
>  c) Falls bei a) oder b) eine Äquivalenzrelation vorliegt,
> geben Sie die zugehörigen Äquivalenzklassen an.

Hallo,

alles beginnt hier damit, daß Du weißt, was eine Äquivalenzrelation ist.

Weißt Du das?

Wenn nicht, mach Dich schlau.

Zu prüfen ist halt, ob die Bedigungen der Äquivalenzrelation für die hier erklärte Relation R gelten.

> Was genau bedeutet denn zum Beispiel diese Erklärung der
> Relation...?

Bei a) stehen zwei Elemente in Relation zueinander, wenn Ihr Produkt [mm] \ge [/mm] 0 ist.
Das ist halt so definiert.

> Und was soll es ändern, wenn auf $ [mm] \IZ [/mm] $ \ {0} xy > 0 ist...?

Das sollst Du dann ja herausfinden...
Die Lebenserfahrung lehrt: es ändert sich etwas, sonst stünde die Aufgabe nicht hier.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]