www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenRelativmetrik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Relativmetrik
Relativmetrik < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relativmetrik: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:04 Fr 15.05.2009
Autor: MissPocahontas

Aufgabe
Sei (X,d) ein metrischer Raum und sei [mm] \emptyset [/mm] ungleich Y [mm] \subset [/mm] X versehen mit der Relativmetrik dY. Zeigen Sie:
Eine Teilmenge U [mm] \subset [/mm] Y ist genau dann offen in (Y,dY), wenn eine in (X,d) offene Teilmenge V existiert mit U = V [mm] \cap [/mm] Y.

Hey, wir sitzen nun schon einige Stunden hier an dieser Aufgabe, aber wir kommen einfach nicht weiter... Bitte, bitte helft uns...

        
Bezug
Relativmetrik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:13 Sa 16.05.2009
Autor: angela.h.b.


>  Hey, wir sitzen nun schon einige Stunden hier an dieser
> Aufgabe, aber wir kommen einfach nicht weiter... Bitte,
> bitte helft uns...

Hallo,

wenn Ihr mit mehreren Leuten mehrere Stunden gegrübelt habt, werdet Ihr ja auch mehrere Lösungsversuche unternommen haben. Von denen solltet Ihr schon etwas preisgeben.

Was habt Ihr Eiuch überlegt, woran scheitert es?

(Was ist eigentlich die "Relativmetrik"?)

Gruß v. Angela


Bezug
                
Bezug
Relativmetrik: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:11 Sa 16.05.2009
Autor: MissPocahontas

Also wir haben so angefangen:
Relativmetrik bedeutet ja, dass (Y,dy) ein metrischer Raum ist bzgl. dy(x,y) = d(x,y).
Naja dann haben wir angenommen U [mm] \subset [/mm] Y ist offen in (Y,dy).
Dann gilt ja für alle x [mm] \in [/mm] U gibt es ein r > 0 mit Br(x) [mm] \subset [/mm] U. Dann haben wir uns hingeschrieben, was jetzt aber Br(x) ist.
Br(x) = { [mm] y\in [/mm] Y, dy(x,y) < r }
Da wir es aber mit einer Relativmetrik zu tun haben, ist das ja das gleiche wie:
{ [mm] y\in [/mm] Y, d(x,y) < r }
Jetzt wissen wir ja noch, dass Y Teilmenge von X ist. Daher dürfte diese Menge ja eine Teilmenge von {y [mm] \in [/mm] X, d(x,y) <r } sein. So soweit waren wir auf der einen Seite.
Wir sollen ja jetzt zeigen, dass eine in (X,d) offene Teilmenge existiert mit U = [mm] V\cap [/mm] Y. Jetzt haben wir uns noch überlegt, naja, was ist eigentlich eine Teilmenge die offen in (X,d) ist:
Für alle x [mm] \\in [/mm] V gibt es ein r> 0 mit Br(x) [mm] \subset [/mm] V. Und auch hier haben wir uns wieder hingeschrieben, was das denn nun bedeutet:
Br(x) = {y [mm] \in [/mm] X, d(x,y) < r }
so jetzt haben wir ja oben und unten ziemlich ähnliche Mengen am Ende stehen, nur oben is halt das x in U und unten in V. Weiter sind wir dann nicht mehr gekommen....

Bezug
                
Bezug
Relativmetrik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 Sa 16.05.2009
Autor: MissPocahontas

naja danke nochma ;) habs jetzt raus ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]