www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikRentenrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Finanzmathematik" - Rentenrechnung
Rentenrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rentenrechnung: Jahre berechnen
Status: (Frage) beantwortet Status 
Datum: 08:20 Mi 23.02.2011
Autor: sax318

Aufgabe
Sie zahlen zwecks Rückzahlung eines Annuitätenkredites in der Höhe von 30.000 Euro jährlich nachschüssig eine Annuität von exakt 4.058,54 Euro. Der mit der Bank vereinbarte Zinssatz beträgt 8 3/8 % p. a. Nach wie viel Jahresraten ist der Kredit zurückgezahlt (n = ?)

Bn = R [mm] *((q^n-1)/(q^n*(q-1))) [/mm]
Bn = 30.000
R = 4.058,41
q= 1,08375
n = ?

30.000 = 4.058,41 [mm] *((1,08375^n-1)/( 1,08375^n*(1,08375-1))) [/mm]
7,3920574806389694486264325191393 = [mm] ((1,08375^n-1)/( 1,08375^n*(1,08375-1))) [/mm]
7,3920574806389694486264325191393 * [mm] (1,08375^n*(1,08375-1)) [/mm] = [mm] 1,08375^n-1 [/mm]
8, [mm] 3920574806389694486264325191393*(1,08375^n*(1,08375-1)) [/mm] = [mm] 1,08375^n [/mm]
8, 3920574806389694486264325191393*(1,8375^(2n) – [mm] 1,8375^n) [/mm] = [mm] 1,08375^n [/mm]
8, 3920574806389694486264325191393 = [mm] (1,08375^n/1,08375^{2n}) [/mm] - [mm] 1,08375^n/1,08375^n [/mm]
8, 3920574806389694486264325191393 = [mm] (1,08375^n/1,08375^{2n}) [/mm] - 1
9, 3920574806389694486264325191393 = [mm] (1,08375^n/1,08375^{2n}) [/mm]


leider weiß ich nciht wies weiter geht.. :-( weil 1,083..^n/1,083..^2n
kann man ja leider nicht durchdivisdieren odeR?.. möglich? das da dann nur noch [mm] 1,083^n [/mm] steht?

dann wärs leicht:
9, 3920574806389694486264325191393 = [mm] 1,08375^n [/mm]
n*log(1,08375) =log(9, 3920574806389694486264325191393)
n = log(9, 3920574806389694486264325191393) / log(1,08375)

n = 0,9727607418515727435903723086072/0,03492911048426670873415100773831
n= 27,849570984343794140305692782459

hmm mehr als 15 wäre wohl irrsinn schätze ich?..

danke schon mal


        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:29 Mi 23.02.2011
Autor: Josef

Hallo sax318,

> Sie zahlen zwecks Rückzahlung eines Annuitätenkredites in
> der Höhe von 30.000 Euro jährlich nachschüssig eine
> Annuität von exakt 4.058,54 Euro. Der mit der Bank
> vereinbarte Zinssatz beträgt 8 3/8 % p. a. Nach wie viel
> Jahresraten ist der Kredit zurückgezahlt (n = ?)
>  Bn = R [mm]*((q^n-1)/(q^n*(q-1)))[/mm]
> Bn = 30.000
>  R = 4.058,41
>  q= 1,08375
>  n = ?
>  

In solchen Fällen nimmt man diese Formel:

n = [mm] \bruch{(In)A -(In)T_1}{(In)q} [/mm]


Viele Grüße
Josef

Bezug
                
Bezug
Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:58 Mi 23.02.2011
Autor: sax318

hallo,

achso, das finde ich super, dass es hier eine andere formel gibt.
aber..

n = Jahre = gefragt
q = Prozent = 1,08375
Aber was ist
In = 0,08375?
A = Annuität = 30.000 ?
T = tilgung = 4.058,54 ?
?

danke!

Bezug
                        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Mi 23.02.2011
Autor: Josef

Hallo,

> hallo,
>  
> achso, das finde ich super, dass es hier eine andere formel
> gibt.

Natürlich kannst du auch den allgemeine Ansatz nehmen:

[mm] 30.000*1,08375^n [/mm] - [mm] 4,058,54*\bruch{1,08375^n -1}{0,08375} [/mm] = 0


>  aber..
>  

die andere Formel geht schneller:

> n = Jahre = gefragt
>  q = Prozent = 1,08375
>  Aber was ist
>  In = 0,08375?
>  A = Annuität = 30.000 ?
>  T = tilgung = 4.058,54 ?
>  ?
>  

In der Aufgabenstellung ist die Annuität = 4.058,54
Die Schuldsumme beträgt 30.000
der Zinssatz beträgt 8,375 %
Jetzt muss die Tilgung ermittelt werden.

In der Annuität in Höhe von 4.058,54 sind Zinsen und Tilgung enthalten.

Die Zinsen kannst du berechnen:

30.000*0,08375 = 2.512,25

Nun kannst du die Tilgung ermitteln, indem du von der Annuität die Zinsen abziehst:

4.058,54 - 2.512,25 = 1.546,04

Die Tilgung beträgt also 1.546,04.

In die Formel eingesetzt:

n = [mm] \bruch{(In) 4.058,54 - (In) 1.546,04}{(In)1,08375} [/mm]

n = 11,9999....

n = 12



Beachte: In = natürlicher Logarithmus


Viele Grüße
Josef


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]