www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikRentenrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Finanzmathematik" - Rentenrechnung
Rentenrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rentenrechnung: Annuitäten und Barwert
Status: (Frage) beantwortet Status 
Datum: 20:13 Mo 14.03.2011
Autor: sax318

Aufgabe
Worin liegt der Unterschied zwischen dem Rentenbarwertfaktor und dem
Annuitätenfaktor? Verdeutlichen Sie dies zur Veranschaulichung mithilfe
eines selbst gewählten Beispieles.

Annuitätenraten = nur die vereinbarte Rate ohne jegliche Zinsen
= Gesamtkapital/ Zahlungsperioden

Barwertformel = Renten + Verzinsung am Anfang aller Leistungen

Beispiel:

Frau x nimmt sich einen KRedit über 250.000€ auf. Sie möchte diesen in 50 (n = 50) gleich hohen Raten zurückzahlen. Die Zahlung soll vorschüssig erfolgen. Verzinsung = 5%

Annuitätenrate = 5000
Rentenbarwertfaktor = Barwertformel

Bn = R * (1/1,05^49) * ((1,05^50-1)/0,05)
Bn = R * 20,127157820259006525050023883691
250000 / 20,127157820259006525050023883691 = R
R = 12421,028454815528076500706967384


korrekt?


        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Di 15.03.2011
Autor: Josef

Hallo sax318,

> Worin liegt der Unterschied zwischen dem
> Rentenbarwertfaktor und dem
>  Annuitätenfaktor?


Um zu berechnen, wie hoch die Rente ist, die man bei gegebenen  Zinssatz und vorgegebener Laufzeit aus einem Anfangskapital zahlen kann, multipliziert man das Anfangskapital (Barwert) mit dem Kehrwert des nachschüssigen Rentenbarwertfaktors. Man nennt den Kehrwert auch Annuitätenfaktor oder Wiedergewinnungsfatkor.


Viele Grüße
Josef

Bezug
                
Bezug
Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Mi 16.03.2011
Autor: sax318

könntest du mir hier ein beispiel geben - denke dann wird es schlüssiger..

Bezug
                        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Mi 16.03.2011
Autor: Josef

Hallo sax318,

> könntest du mir hier ein beispiel geben - denke dann wird
> es schlüssiger..


Ich versuche es mal.


Rentenbarwertformel:

[mm] R_0 [/mm] = [mm] r*\bruch{q^n -1}{q-1}*\bruch{1}{q^n} [/mm]

Der Faktor:

[mm] \bruch{q^n -1}{q-1}*\bruch{1}{q^n} [/mm]





Annuitätentilgung:

[mm] K_n [/mm] = [mm] S*q^n [/mm]

Die konstanten Aufwendungen A werden auf einem anderen Konto als nachschüssig gezahlte Raten gesammelt und verzinst. Die Raten wachen in n Jahren auf

[mm] R_n [/mm] = [mm] A*\bruch{q^n -1}{q-1} [/mm]

an.

Wenn beide Konten den gleichen Betrag aufweisen, dann können sie ausgeglichen werden und die Schuld ist getilgt:

[mm] K_n [/mm] = [mm] S*q^n [/mm] = [mm] R_n [/mm] = [mm] A*\bruch{q^n -1}{q-1} [/mm]

[mm] S*q^n [/mm] = [mm] A*\bruch{q^n -1}{q-1} [/mm]

A = [mm] S*q^n *\bruch{q-1}{q^n -1} [/mm]


Der Faktor

[mm] \bruch{q^n *(q-1)}{q^n - 1} [/mm]

ist der Kehrwert des nachschüssigen Rentenbarwertfaktors.



Viele Grüße
Josef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]