www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenRepräsentatensystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Relationen" - Repräsentatensystem
Repräsentatensystem < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Repräsentatensystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Fr 25.04.2008
Autor: Basti51

Aufgabe
Untersuche für jede der folgenden vier Relationen auf der menge [mm] \IZ [/mm] der ganzen Zahlen, ob sie Äquivalenzrelationen sind. Falls ja, so gib ein vollständiges Repräsentantensystem für die Äquivalenzklassen an.

(a) [mm] a\simb [/mm] falls eine Zahl p in [mm] \IZ [/mm]  gibt, so dass x-y=3*p gilt.

(b) [mm] a\simb [/mm] falls x*y>0 oder x=y

Ich habe bereits die beiden Relationen überprüft und ich denke es handelt sich um Äquivalenzrelationen. Mein Problem:
Ich hab keine Ahnung, wie ich ein Repräsentantensystem aufstelle und wie man bei (a) die Äquivalenzklassen aufschreibt.

Meine Äuivalenzklassen für (b) sind: [o],[x,y >0], [x,y>0] Schreibt man das so auf? Unsere Übungsleitung hat uns nichts dazu sagen können und im Skript finde ich auch nichts.

Wäre nett, wenn mir jemand helfen könnte.

mfg Basti

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Repräsentatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Fr 25.04.2008
Autor: Zneques

Hallo,

Wenn es eine Äquivalenzrel. ist, dann gibt es Klassen (Mengen) [mm] \{a_1,a_2,a_3,...\} [/mm] für die gilt, dass [mm] \forall [/mm] i,j [mm] a_i \sim a_j [/mm]
Bzgl. der Relation [mm] \sim [/mm] sind diese Elemente nun alle gleich.
Daher kann man sich eines aussuchen, und das dann als Repräsentant für die gesammte Menge verwenden.

Du kennst vielleicht die Konstruktion der ganzen Zahlen [mm] \IZ [/mm] aus den Natürlichen [mm] \IN. [/mm]
Das Paar [mm] (n_1,n_2) [/mm] ist äquivalent zu [mm] (m_1,m_2) [/mm] falls [mm] n_1-n_2=m_1-m_2 [/mm]
Dann ist (2,3) [mm] \sim [/mm] (3,4) , wegen 2-3=3-4.
Als Repräsentant wird dann (0,1) also 0-1=-1 gewählt.
Wenn man -1 schreibt meint man theoretisch die Klasse aller Paare nat. Zahlen [mm] (n_1,n_2) [/mm] , die äquivalent zu (0,1) sind.

Du musst somit nur ein Ele. aus jeder Klasse aussuchen.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]