www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisResiduum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Residuum
Residuum < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Residuum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 Sa 19.05.2007
Autor: victoria5

Aufgabe
Es sei f(z) = [mm] \bruch{1}{z(sinz)^4} [/mm] , z [mm] \not= k\pi [/mm] (k [mm] \in \IZ) [/mm]
Man bestimme Res(f,0)

Habe mit den Residuen so meine liebe Mühe und Not und komme auch mit dieser Aufgabe nicht zurecht. Meine einzige Idee wäre es sin z durch Z - [mm] \bruch{Z^3}{3!} [/mm] + [mm] \bruch{Z^5}{5!} [/mm] ... auszudrücken. Aber wie mache ich dann weiter?

Vielen Dank für Eure Hilfe


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Residuum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 So 20.05.2007
Autor: Leopold_Gast

Das mit der Potenzreihe ist die richtige Idee. Klammere im Nenner zunächst [mm]z[/mm] aus. Du erhältst

[mm]f(z) = \frac{1}{z^5} \cdot \frac{1}{\left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right)^4}[/mm]

Den zweiten Bruch mußt du jetzt in eine Potenzreihe entwickeln. Da nur gerade Potenzen vorkommen, kann man von vorneherein

[mm]a + b \, z^2 + c \, z^4 + \ldots[/mm]

dafür ansetzen. Dabei ist [mm]c[/mm] das gesuchte Residuum, denn mit dem Faktor [mm]\frac{1}{z^5}[/mm] davor liefert die vierte Potenz den Beitrag [mm]c \, z^{-1}[/mm].

Zunächst ist die vierte Potenz der Klammer zu berechnen:

[mm]\left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right)^4 = 1 - \frac{2}{3} \, z^2 + \frac{1}{5} \, z^4 + \ldots[/mm]

Darauf kommt man, indem man die Klammern nach dem Distributivgesetz "jeder mit jedem" ausmultipliziert. Man muß dabei nur Potenzen berücksichtigen, die auch relevante Beiträge liefern:

[mm]\left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right) \cdot \left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right) \cdot \left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right) \cdot \left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right)[/mm]

Das konstante Glied entsteht durch [mm]1 \cdot 1 \cdot 1 \cdot 1[/mm]. Das quadratische Glied entsteht, wenn drei konstante Glieder aus jeweils einer Klammer auf ein quadratisches treffen:

[mm]1 \cdot 1 \cdot 1 \cdot \left( - \frac{1}{6} \, z^2 \right) + 1 \cdot 1 \cdot \left( - \frac{1}{6} \, z^2 \right) \cdot 1 + 1 \cdot \left( - \frac{1}{6} \, z^2 \right) \cdot 1 \cdot 1 + \left( - \frac{1}{6} \, z^2 \right) \cdot 1 \cdot 1 \cdot 1 = - \frac{2}{3} \, z^2[/mm]

Bei der vierten Potenz ist es jetzt eine Idee schwerer. Überlege selbst, wie man auf [mm]\frac{1}{5} \, z^4[/mm] kommt. Letztlich spielt da ein bißchen elementare Kombinatorik eine Rolle.

Im nächsten Schritt hat man jetzt den Kehrwert der Potenzreihe zu bilden. Am besten fängst du so an:

[mm]\left(1 - \frac{2}{3} \, z^2 + \frac{1}{5} \, z^4 + \ldots \right) \cdot \left(a + b \, z^2 + c \, z^4 + \ldots \right) = 1[/mm]

Links mußt du wieder wie beschrieben ausmultiplizieren. Das liefert dir durch Vergleich mit der rechten Seite (dort kommt nur das konstante Glied 1 vor, alle anderen Koeffizienten sind 0) Bedingungen für [mm]a,b,c[/mm], welche du dann nach und nach berechnen kannst. Ich habe (ohne Gewähr) [mm]a = 1 \, , \ b = \frac{2}{3} \, , \ c = \frac{11}{45}[/mm] erhalten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]