www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieRestklassen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Restklassen
Restklassen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 Fr 13.12.2013
Autor: ElizabethBalotelli

Aufgabe
Es existiert ein a [mm] \in \IZ/(n) [/mm] mit n [mm] \in \IN>2 [/mm] ,für das es kein b [mm] \in \IZ/(n) [/mm] gibt, so, dass gilt: [mm] a=b^2 [/mm]

Ich habe mal mehrere [mm] \IZ/(n) [/mm] getestet, und jedesmal hat sich herausgestellt, dass dieses a auf die 2 zutrifft, bei n=7 ging es aber schief. Ich muss laut Aufgabenstellung die Behauptung für ein a beweisen, das für ALLE n [mm] \in \IN>2 [/mm] die Bedingung [mm] x^2 [/mm] modulo n [mm] \ne [/mm] a erfüllt, (für alle x<n) oder?
Über Anregungen würde ich mich freuen =)
Liebe Grüße

        
Bezug
Restklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:56 Sa 14.12.2013
Autor: felixf

Moin!

> Es existiert ein a [mm]\in \IZ/(n)[/mm] mit n [mm]\in \IN>2[/mm] ,für das es
> kein b [mm]\in \IZ/(n)[/mm] gibt, so, dass gilt: [mm]a=b^2[/mm]
>
>  Ich habe mal mehrere [mm]\IZ/(n)[/mm] getestet, und jedesmal hat
> sich herausgestellt, dass dieses a auf die 2 zutrifft, bei
> n=7 ging es aber schief. Ich muss laut Aufgabenstellung die
> Behauptung für ein a beweisen, das für ALLE n [mm]\in \IN>2[/mm]
> die Bedingung [mm]x^2[/mm] modulo n [mm]\ne[/mm] a erfüllt, (für alle x<n)
> oder?

Nein, du musst zu jedem $n$ ein passendes $a$ finden. Die Aufgabenstellung ist da recht schlecht formuliert.

Das $a$ sollst du uebrigens nicht konkret angeben, es reicht zu beweisen dass es eins gibt.

Tipp dazu: nimm eine Primzahl $p$, die $n$ teilt, und zeige das ganze erst fuer [mm] $\IZ/(p)$. [/mm] Daraus folgere das Ergebnis fuer [mm] $\IZ/(n)$ [/mm] (mit dem gleichen $a$).

Und zu [mm] $\IZ/(p)$: [/mm] setze $G := [mm] \IZ/(p) \setminus \{ 0 \}$ [/mm] und schau die Abbildung $G [mm] \to [/mm] G$, $x [mm] \mapsto x^2$ [/mm] an. Was kannst du ueber sie aussagen? Kann sie surjektiv sein?

LG Felix


Bezug
                
Bezug
Restklassen: Die böse Zwei
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:11 Sa 14.12.2013
Autor: Schadowmaster

Hey,

um felix Antwort noch kurz zu ergänzen:
Es gibt einen Grund, warum $n>2$ gefordert ist. Wie du vielleicht schon gemerkt hast, geht die Aussage für $n=2$ schief.
Daher kriegst du auch für $p=2$ ein paar Probleme, betrachte den Fall also am besten getrennt.

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]