www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenRiccati DGL Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Riccati DGL Beweis
Riccati DGL Beweis < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riccati DGL Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Sa 17.12.2011
Autor: qsxqsx

Guten Abend Mathematiker,

Ich verstehe leider nicht wieso der folgende Beweis aus meinem Skript beweist, dass die Kostenfunktion J durch den Eingang u(t) = [mm] -R^{-1}(t)*B^{T}*P(t)*x(t) [/mm] minimiert wird.
Es gilt x'(t) = A*x(t) + [mm] B*u(t),x(t_{0}) [/mm] = [mm] x_{0} [/mm]

Gegeben ist die Kostenfunktion J in Abhängigkeit vom Statevector x(t) und andrerseits vom Input u(t), welche minimiert werden soll.
J := [mm] x^{T}(t_{1})*P_{t_{1}}*x(t_{1}) [/mm] + [mm] \integral_{t_{0}}^{t_{1}}{[x^{T}(t)*Q(t)*x(t) + u^{T}(t)*R(t)*u(t)]dt} [/mm]

Q(t) gewichtet die Kosten für x(t), R(t) gewichtet die Kosten für u(t)
und P(t) erfüllt die Matrix-Riccati-Differentialgleichung
P'(t) = [mm] -A^{T}*P(t) [/mm] - P(t)*A + [mm] P(t)*B*R(t)^{-1}*B^{T}*P(t) [/mm] - Q(t), mit [mm] P(t_{1}) [/mm] = [mm] P_{t_{1}} [/mm]

Beweis:

1.) "Addiere Null"
J := [mm] x^{T}(t_{1})*P_{t_{1}}*x(t_{1}) [/mm] + [mm] \integral_{t_{0}}^{t_{1}}{[x^{T}(t)*Q(t)*x(t) + u^{T}(t)*R(t)*u(t)]dt} [/mm] - [mm] \integral_{t_{0}}^{t_{1}}{x^{T}(t)*[P'(t) + A^{T}*P(t) + P(t)*A - P(t)*B*R^{-1}(t)*B^{T}*P(t) + Q(t)]x(t)dt} [/mm]
2.) Aumultiplizieren und erneute Addition von Null ergibt
J = [mm] x^{T}(t_{1})*P_{t_{1}}*x(t_{1}) [/mm]  - [mm] \integral_{t_{0}}^{t_{1}}{[Ax(t) + Bu(t)]^{T}*P(t)*x(t) + x^{T}(t)*P'(t)*x(t) + x^{T}(t)*P(t)*[Ax(t) + Bu(t)]dt} [/mm]
+ [mm] \integral_{t_{0}}^{t_{1}}{u^{T}(t)*R(t)*u(t) + u^{T}*B^{T}*P(t)*x(t) + x^{T}(t)*P(t)*B*u(t) + x^{T}(t)*P(t)*B*R^{-1}(t)*B^{T}*P(t)*x(t) dt} [/mm]

Das erste Integral enthält das totale Differential von [mm] x^{T}(t)*P(t)*x(t) [/mm] und kann analytisch integriert werden.
3.) Es folgt
J = [mm] x^{T}_{0}*P(t_{0})*x_{0} [/mm] +  [mm] \integral_{t_{0}}^{t_{1}}{[u(t) + R^{-1}(t)*B^{T}*P(t)*x(t)]^{T}*R(t)*[u(t) + R^{-1}*B^{T}*P(t)*x(t)]dt} [/mm]

wenn also u(t) = - [mm] R^{-1}*B^{T}*P(t)*x(t) [/mm] wird der Integrand Null.
Was ich nun nicht verstehe ist, wer sagt, dass  [mm] x^{T}_{0}*P(t_{0})*x_{0} [/mm] nicht noch minimiert werden kann durch ein anderes P(t) sodass [mm] P(t_{0}) [/mm] noch kleiner wird... Mit ist das nicht so klar.


Und dann noch eine Frage: Wie kommt man als Mathematiker überhaupt auf die Idee, dass dieses P(t) in einer DGL zu suchen ist? Wie ist man darauf gekommen?

Danke.

Beste Grüsse

        
Bezug
Riccati DGL Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Sa 24.12.2011
Autor: Harris

Hi!

Weil noch keiner geantwortet hat, versuche ich es mal mit einer eventuell unbefriedigenden Antwort.

Die Aussage ist ja äquivalent dazu, dass das Integral für alle anderen Eingaben von $u(t)$ positiv ist und somit stets $J$ für diese Eingabe größer als $J$ mit der Eingabe [mm] $-R^{-1}B^TP(t)x(t)$ [/mm] ist. Dazu müsste man aber noch wissen, wie die Matrizen so aussehen. Sind da nur positive Funktionen zulässig usw...?

Also: [mm] $\int_{t_0}^{t_1}[u(t)...x(t)]dt\geq [/mm] 0$ (in abgekürzter Schreibweise ;). Dann ist klar, dass der Wert $J$ minimal ist, wenn dieses Integral verschwindet.

Du kannst leider kein anders $P(t)$ verwenden, da $P(t)$ eine DGL (mit gewissen Voraussetzungen) erfüllt, und es einen Startwert [mm] $P(t_0)$ [/mm] dafür gibt. Ein Satz aus der Mathematik (Picard-Lindelöf) besagt, dass somit $P$ eindeutig festgelegt ist.

Zur zweiten Frage: Formeln aus der Wirtschaft werden oft mit Approximation hergeleitet. Ein Bsp:

Du hast zum Zeitpunkt $i$ das Geld $x(i)$ auf dem Konto (und änderst aktiv nix daran)

Nun gilt mit Zinssatz $p$ folgende Gleichung (in der Mathematik heißt das Differenzengleichung).
$x(i+1)=(1+p)x(i)$, also $x(i+1)-x(i)=px(i)$.

Nun kann ja eine Verzinsung theoretisch jährlich, monatlich, wöchentlich, täglich, stündlich, minütlich, sekündlich, ... stattfinden, also die Verzinsungszeitpunkte haben immer geringeren Abstand. Hierbei macht man einen Fehler, der hier vernachlässigt werden soll. Man ersetzt also die diskrete Variable $i$ durch eine kontinuierliche.

Dann ist $x(i+1)-x(i)$ die infinitesimale Veränderung des Kontostandes zum Zeitpunkt $i$, also in etwa $x'(i)$.

Und schon hat man eine Differentialgleichung $x'=px$, aus der man ablesen kann, dass bei einem Konto das Geld exponentiell zunimmt.


Vielleicht sagt dir nomineller und effektiver Jahreszins etwas. Wegen Zinseszins ist klar, dass eine einmalige Verzinsung mit Zinssatz $p$ schlechter ist, als eine zweimalige Verzinsung mit Zinssatz $p/2$. Wenn man 100 mal mit $p/100$ verzinst, kommt am Ende immer mehr Geld raus... Das Geld am Ende lässt sich aber nicht durch kleinere Verzinsungszeiträume beliebig steigern, denn bei n Verzinsungen mit Zinssatz $p/n$ gilt

[mm] $x(ende)=x(anfang)(1+\frac{p}{n})^n \rightarrow x\cdot e^p$. [/mm]

Sorry für das Abdriften am Ende... bin nur grad in Schreiblaune gewesen ;)

Grüße, Harris

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]