www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenRichtungsableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Richtungsableitung
Richtungsableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Mi 22.06.2011
Autor: mathefreak89

Aufgabe
Berechnen sie für [mm] f(x,y,z)=x^2y^2z^2 [/mm] und a=(1,-1,3) die Richtungsableitung von f im Punkt a in die Richtung, die vom Punkt a zum Punkt b=(0,1,1) zeigt

Hallo

Würd gern nur einmal wissen ob das alles so richtig ist und wenn nicht wo der Fehler liegt:

Habe ertsmal den Vektor bestimmt der die Richtung angibt  
also [mm] b-a:\vektor{0\\1\\1 }-\vektor{1 \\ -1\\3}=\vektor{-1 \\ 2\\-2} [/mm]

dann habe ich für den grad folgendes bestimmt:

grad [mm] f(x,y,z)=(2xy^2z^2 [/mm]  ,  [mm] 2yx^2z^2 [/mm]  ,  [mm] 2zy^2x^2) [/mm]

mit dem Punkt a:

grad f(a)=(18,-18,6)

Die beiden ergebnisse  für den Grad und den richtungsvektor habe ich dann in die formel für Richtungsableitungen eingesetzt und erhalte -22

Ist das alles richtig :)??

Danke euch Gruß

        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Mi 22.06.2011
Autor: fred97


> Berechnen sie für [mm]f(x,y,z)=x^2y^2z^2[/mm] und a=(1,-1,3) die
> Richtungsableitung von f im Punkt a in die Richtung, die
> vom Punkt a zum Punkt b=(0,1,1) zeigt
>  Hallo
>  
> Würd gern nur einmal wissen ob das alles so richtig ist
> und wenn nicht wo der Fehler liegt:
>  
> Habe ertsmal den Vektor bestimmt der die Richtung angibt  
> also [mm]b-a:\vektor{0\\1\\1 }-\vektor{1 \\ -1\\3}=\vektor{-1 \\ 2\\-2}[/mm]
>  
> dann habe ich für den grad folgendes bestimmt:
>  
> grad [mm]f(x,y,z)=(2xy^2z^2[/mm]  ,  [mm]2yx^2z^2[/mm]  ,  [mm]2zy^2x^2)[/mm]
>  
> mit dem Punkt a:
>  
> grad f(a)=(18,-18,6)
>  
> Die beiden ergebnisse  für den Grad und den
> richtungsvektor habe ich dann in die formel für
> Richtungsableitungen eingesetzt und erhalte -22
>  
> Ist das alles richtig :)??

Ja, ist es

FRED

>  
> Danke euch Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]