Riemann-Stieltjes-Integrale < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 15:24 Fr 09.06.2006 | Autor: | Sir_E |
Aufgabe | Seien [mm] \beta_{j} [/mm] : [-1,1] [mm] \mapsto \IR, [/mm] j=1,2,3 mit [mm] \beta_{j}(x)=0 [/mm] für x<0, und [mm] \beta_{j}(x)=1 [/mm] für x>0 und [mm] \beta_{1}(0)=0, \beta_{2}(0)=1, \beta_{3}(0)= \bruch{1}{2}.
[/mm]
Es sei f beschränkt auf [-1,1]
a) Zu zeigen: f ist bzgl. [mm] \beta{1} [/mm] auf [-1,1] genau dann Riemann-Stieltjes Integrierbar wenn der f(0+) = f(0). Der Wert des Integrals ist dann f(0).
b) Formulieren und beweisen sie die Aussage für a) für [mm] \beta{2}
[/mm]
c) Zu zeigen: f ist bzgl. [mm] \beta{3} [/mm] auf [-1,1] riemann-stieltjes int'bar genau dann wenn f stetig ist in x=0.
d) Es sei f stetig in x=0. Zeigen Sie, dass gilt:
[mm] \integral_{-1}^{1}{f(x) d(\beta{1})} [/mm] = [mm] \integral_{-1}^{1}{f(x) d(\beta{2})} [/mm] = [mm] \integral_{-1}^{1}{f(x) d(\beta{3})} [/mm] = f(0)
nächste Aufgabe:
Mit den Bezeichnungen der vorherigen Aufgabe zeigen Sie, dass [mm] \beta{2} [/mm] bezüglich [mm] \beta{1} [/mm] Riemann-Stieltjes int'bar ist obwohl kein Grenzwert existiert mit
[mm] \limes_{|Z|\rightarrow\0} S_{\beta_{1}}(\beta_{2},Z) [/mm] |
Also, a,b,c habe ich glaub ich hingekriegt. Es geht eigentlich also nur um die letzte Frage d. Ich hab da folgendes Problem:
Für das Riemann-Stieltjes_Integral bzgl. [mm] \beta_{3} [/mm] habe ich [mm] \bruch{1}{2}*f(0) [/mm] raus und nicht einfach nur f(0) was ich bezüglich [mm] \beta_{1} [/mm] und [mm] \beta_{2} [/mm] raus habe. Könnt ihr mir da vielleicht weiterhelfen?
Bei der zweiten Frage habe ich rausgefunden, dass die Riemann Stiletjes Summen zwar immer konvergieren aber je nach Wahl der Zwischenvektoren andere Werte haben. Was mache ich jetzt daraus?
Danke schon mal im Voraus!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:18 Mo 12.06.2006 | Autor: | Sir_E |
Halo Leute
Ich habe keine ahnung wie ich den artikel lösche. aber jedenfalls ist keine antwort mehr nötig, der groschen ist bei mir gefallen
|
|
|
|