www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisRiemannintegral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Riemannintegral
Riemannintegral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemannintegral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:24 Mi 14.09.2005
Autor: stevarino

Hallo

Beweise mit Hilfe der Formel
[mm] \integral_{a}^{b} [/mm] {f(x) [mm] dx}=\limes_{n\rightarrow\infty}\summe_{i=1}^{n}{f(a+((k/n)*(b-a))*((b-a)/n)} [/mm]

[mm] \integral_{a}^{b} {xdx}=(b^2-a^2)/2 [/mm]

setz ich da einfach in die Formel ein

[mm] \integral_{a}^{b} {xdx}=\limes_{n\rightarrow\infty}\summe_{i=1}^{n}{(a+((k/n)*(b-a))*((b-a)/n)} [/mm]
weiter gleich
[mm] \limes_{n\rightarrow\infty}\summe_{i=1}^{n}{(1/n^2)*(k*(a+b)^2+a*b*n-a^2*n^2)} [/mm]

und wie jetzt weiter....


Danke Stevo


        
Bezug
Riemannintegral: Hilfe zum Weitermachen
Status: (Antwort) fertig Status 
Datum: 15:25 Mi 14.09.2005
Autor: statler

Hallo erstmal,

> Beweise mit Hilfe der Formel
>   [mm]\integral_{a}^{b}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{f(x)

> [mm]dx}=\limes_{n\rightarrow\infty}\summe_{i=1}^{n}{f(a+((k/n)*(b-a))*((b-a)/n)}[/mm]

Der Summationsindex ist bestimmt k und nicht i. Außerdem gibt es 6 linke Klammern und nur 5 rechte.

>  
> [mm]\integral_{a}^{b} {xdx}=(b^2-a^2)/2[/mm]
>  
> setz ich da einfach in die Formel ein
>  
> [mm]\integral_{a}^{b} {xdx}=\limes_{n\rightarrow\infty}\summe_{i=1}^{n}{(a+((k/n)*(b-a))*((b-a)/n)}[/mm]
>  

Mit den obigen Bemerkungen ist das OK! Jetzt muß man wissen, was die Summe der ersten n natürlichen Zahlen ist: (1/2)*n*(n+1), und die Summe mal für ein festes n umformen. (b-a)/n kann ich dann vor die Summe ziehen. Ferner ist zu berücksichtigen, daß ich das a jedesmal mitaddiere, das ergibt n*a.

> weiter gleich
>

Nee, das gefällt mir nicht so gut und scheint mir auch falsch zu sein.

> [mm]\limes_{n\rightarrow\infty}\summe_{i=1}^{n}{(1/n^2)*(k*(a+b)^2+a*b*n-a^2*n^2)}[/mm]
>  
> und wie jetzt weiter....

Nach meinem Rezept....

>  
>

Weitere Fragen sind willkommen!
Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Riemannintegral: Frage
Status: (Frage) beantwortet Status 
Datum: 16:01 Mi 14.09.2005
Autor: stevarino

Hallo

Ich verstehnicht ganz was du mit umformen für festes n meinst wenn ich ein festet n einsetz brauch ich nichts umformen da kommt ja dann ein fixer Wert raus???

Bezug
                        
Bezug
Riemannintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Mi 14.09.2005
Autor: Julius

Hallo!

Also, wir haben für festes $n$:

[mm] $\sum\limits_{k=1}^n \left( \frac{a\cdot (b-a)}{n} + \frac{k}{n^2}(b-a)^2 \right)$ [/mm]

$= [mm] \frac{a(b-a)}{n} \underbrace{\sum\limits_{k=1}^n 1}_{=\, n} [/mm] + [mm] \frac{(b-a)^2}{n^2} \sum\limits_{k=1}^n [/mm] k$

$= a(b-a) + [mm] \frac{(b-a)^2}{n^2} \cdot \frac{n(n+1)}{2}$ [/mm]

$ = a(b-a) + [mm] \frac{(b-a)^2}{2} \cdot \frac{n+1}{n}$ [/mm]

$= [mm] \frac{2ab-2a^2+b^2-2ab+a^2}{2} \cdot \frac{n+1}{n}$ [/mm]

$= [mm] \frac{b^2 - a^2}{2} \cdot \frac{n+1}{n}$. [/mm]

Daraus folgt:

[mm] $\lim\limits_{n \to \infty}\sum\limits_{k=1}^n \left( \frac{a\cdot (b-a)}{n} + \frac{k}{n^2}(b-a)^2 \right) [/mm] = [mm] \frac{b^2-a^2}{2}$. [/mm]

Liebe Grüße
Julius

Bezug
                                
Bezug
Riemannintegral: Frage
Status: (Frage) beantwortet Status 
Datum: 18:43 Mi 14.09.2005
Autor: stevarino

Vielleicht steh ich etwas auf der Leitung aber das n vor der ersten Summe fällt weg weil es 1 gesetzt wird?!?
Wieso kann ich das 1 setzen?

$ = [mm] \frac{a(b-a)}{n} \underbrace{\sum\limits_{k=1}^n 1}_{=\, n} [/mm] + [mm] \frac{(b-a)^2}{n^2} \sum\limits_{k=1}^n [/mm] k $

Danke Stevo

Bezug
                                        
Bezug
Riemannintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Mi 14.09.2005
Autor: Julius

Hallo!

Nein, hier wurde nicht $1$ gesetzt. ;-)

Es gilt: [mm] $\sum\limits_{k=1}^n [/mm] 1 = n$ (da $n$ mal die $1$ aufsummiert wird), und dieses $n$ kürzt sich mit dem anderen $n$ weg...

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]