www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesRiemannsche Summen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - Riemannsche Summen
Riemannsche Summen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemannsche Summen: Integral-Differentialrechnung
Status: (Frage) beantwortet Status 
Datum: 02:01 Sa 19.04.2008
Autor: Mirage.Mirror

Aufgabe
[Dateianhang nicht öffentlich]

Mein altes Problem, die Grenzwertberechnung, die ich immer noch nur naiv lösen will, obwol ich weiß, dass es nicht klappt.
Ich würde mich freuen, wenn mir jemand einen Tipp geben oder mir helfen kann, wie ich diesen Grenzwert unter zuhilfenahme der Reiman'schen Summen und de, Hauptsatz heraufinde. Und wie genau ist der Hinweis zu verstehen?

vielen Dank schon im Voraus

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Riemannsche Summen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:13 Sa 19.04.2008
Autor: Marcel

Hallo,

> [Dateianhang nicht öffentlich]
>  Mein altes Problem, die Grenzwertberechnung, die ich immer
> noch nur naiv lösen will, obwol ich weiß, dass es nicht
> klappt.
>  Ich würde mich freuen, wenn mir jemand einen Tipp geben
> oder mir helfen kann, wie ich diesen Grenzwert unter
> zuhilfenahme der Reiman'schen Summen und de, Hauptsatz
> heraufinde. Und wie genau ist der Hinweis zu verstehen?

wenn Du [mm] $f(x)=\frac{1}{a+bx}$ [/mm] betrachtest:

Berechne mal für festes $n [mm] \in \IN$ [/mm] und $k [mm] \in \IN_{\le n}:=\{m \in \IN: m \le n\}$ [/mm] (bei mir: $0 [mm] \notin \IN$): [/mm]

[mm] $(\*)$ $f\left(\frac{k}{n}\right)$ [/mm]

Dann betrachte für $n [mm] \in \IN$: [/mm]

[mm] $S_n:=\frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$ [/mm]

(Setze rechterhand mal [mm] $f\left(\frac{k}{n}\right)$ [/mm] aus [mm] $(\*)$ [/mm] ein und ziehe das [mm] $\frac{1}{n}$ [/mm] unter das Summenzeichen (das darfst Du ja bei einer endlichen Summe, und für festes $n$ steht da eine endliche Summe)).

und überlege Dir, was das ganze vll. mit [mm] $\int_0^1 [/mm] f(t)dt$ zu tun haben könnte.

(Tipp: Mit [mm] $a_0=0 [/mm] < [mm] a_1=\frac{1}{n} [/mm] < [mm] a_2=\frac{2}{n} [/mm] < ... < [mm] a_{n-1}=\frac{n-1}{n} [/mm] < [mm] a_n=\frac{1}{n}$ [/mm] hat man eine Zerlegung von $[0,1]$, die mit wachsendem $n$ feiner wird. Also?)

Zu guter letzt überlege Dir, wie Du

[mm] $\int_0^1 [/mm] f(t)dt$ mit dem HDI berechnen kannst. (Von der Logik her sollte man das eigentlich sogar als ersten Schritt tun, denn dann weiß man sofort etwas über die Existenz des Grenzwertes der obigen Riemann-Summen [mm] $S_n$ [/mm] bei $n [mm] \to \infty.$) [/mm]

Vll. noch etwas:
Um [mm] $\int \frac{1}{a+bx}dx$ [/mm] zu berechnen, also eine Stammfunktion von obigem $f$ angeben zu können:
Substituiere $y=y(x):=a+bx$, dann ist [mm] $y\,'=y\,'(x)=\frac{dy}{dx}=b \gdw dx=\frac{dy}{b}$ [/mm] (beachte: Wegen $b > 0$ ist insbesondere $b [mm] \not=0$). [/mm] Der Rest (zur Berechnung einer Stammfunktion mit dieser Substitution) ist Dir hoffentlich klar?

P.P.S.:
Wie kam' ich auf diese Idee?

Rückwärtsrechnung:

[mm] $\sum_{k=1}^n \frac{1}{na+kb}=\sum_{k=1}^n \frac{1}{n}*\underbrace{\blue{\frac{1}{a+b\red{\frac{k}{n}}}}}_{=\blue{f\left(\red{\frac{k}{n}}\right)}}=\frac{1}{n}\sum_{k=1}^n f\left(\frac{k}{n}\right)$ [/mm]

Und dann muss man sich Gedanken über [mm] $\frac{k}{n}$ [/mm] machen, wenn $n$ fest und $k$ die Werte von $1$ bis $n$ durchläuft und was passiert, wenn dann $n [mm] \to \infty$. [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]