www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisRiemannscher Abbildungssatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Riemannscher Abbildungssatz
Riemannscher Abbildungssatz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemannscher Abbildungssatz: Beweis...
Status: (Frage) überfällig Status 
Datum: 11:41 Di 17.07.2007
Autor: linder05

Aufgabe
Es sei [mm] $f\in \mathcal{O(G)}$ [/mm] nirgends verschwindend und holomorph und es
existiere in [mm] $\mathcal{G}$ [/mm] ein holomorpher Zweig der Wurzel von $f$. Dann folgt:
[mm] \begin{displaymath} \text{Es ist }\ \mathcal{G}=\mathbb C\ \text{oder } \mathcal{G}\ \text{ist konform äquivalent zu } \mathbb E. \end{displaymath} [/mm]

hi Leute,

ich muss diese Implikation sehr genau beweisen und es ist echt wichtig für mich! Leider weiß ich nicht genau, wie ich anfangen soll... ich denke ist ist zudem ziemlich "komplex" :)

Wer hätte denn ein paar Tipps für mich? Vielen lieben Dank!!!

        
Bezug
Riemannscher Abbildungssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:40 Do 19.07.2007
Autor: linder05

Hi Leute,

auch wenn die Fälligkeit abgelaufen ist, bin ich auch die nächsten Tage/Wochen noch an Tipps interessiert.... sehr sogar! würde mich also freuen, wenn mir jemand helfen könnte, wie man an sowas heran geht...
DANKE!

Bezug
        
Bezug
Riemannscher Abbildungssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Do 19.07.2007
Autor: felixf

Hallo Christian!

> Es sei [mm]f\in \mathcal{O(G)}[/mm] nirgends verschwindend und
> holomorph und es
>  existiere in [mm]\mathcal{G}[/mm] ein holomorpher Zweig der Wurzel
> von [mm]f[/mm]. Dann folgt:
>  [mm]\begin{displaymath} \text{Es ist }\ \mathcal{G}=\mathbb C\ \text{oder } \mathcal{G}\ \text{ist konform äquivalent zu } \mathbb E. \end{displaymath}[/mm]

Was genau ist [mm] $\mathcal{G}$? [/mm] Wenn es ein beliebiges Gebiet ist, so ist die Aussage falsch: du nimmst einfach irgendein Gebiet in einer offenen Halbebene (auf deren Rand 0 liegt) und nimmst auf diesem Gebiet z.B. die Identitaetsfunktion. Nach deiner Aussage muesste dieses Gebiet dann konform aequivalent zur Kreisscheibe sein -- was bei nicht einfach zusammenhaengenden [mm] $\mathcal{G}$ [/mm] eindeutig falsch ist.

Wenn jedoch [mm] $\mathcal{G}$ [/mm] sowieso einfach zusammenhaengend ist, wozu braucht man dann das $f$? Die Aussage folgt dann sofort aus dem Riemannschen Abbildungssatz (und den sollst du hier sicher nicht beweisen, das ist gar nicht so einfach)...

LG Felix


Bezug
                
Bezug
Riemannscher Abbildungssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Sa 21.07.2007
Autor: felixf

Hallo!

> > Es sei [mm]f\in \mathcal{O(G)}[/mm] nirgends verschwindend und
> > holomorph und es
>  >  existiere in [mm]\mathcal{G}[/mm] ein holomorpher Zweig der
> Wurzel
> > von [mm]f[/mm]. Dann folgt:
>  >  [mm]\begin{displaymath} \text{Es ist }\ \mathcal{G}=\mathbb C\ \text{oder } \mathcal{G}\ \text{ist konform äquivalent zu } \mathbb E. \end{displaymath}[/mm]
>  
> Was genau ist [mm]\mathcal{G}[/mm]? Wenn es ein beliebiges Gebiet
> ist, so ist die Aussage falsch: du nimmst einfach irgendein
> Gebiet in einer offenen Halbebene (auf deren Rand 0 liegt)
> und nimmst auf diesem Gebiet z.B. die Identitaetsfunktion.
> Nach deiner Aussage muesste dieses Gebiet dann konform
> aequivalent zur Kreisscheibe sein -- was bei nicht einfach
> zusammenhaengenden [mm]\mathcal{G}[/mm] eindeutig falsch ist.

Oder noch einfacher: nimm irgendein Gebiet und darauf die konstante Funktion 1. Damit sind die Voraussetzungen offensichtlich erfuellt, die Aussage jedoch falsch.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]