www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungRiesenableitung bei Taylorp.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Riesenableitung bei Taylorp.
Riesenableitung bei Taylorp. < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riesenableitung bei Taylorp.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:33 Mo 02.02.2009
Autor: pawlow

Aufgabe
Berechnen Sie das Taylorpolynom [mm]T_4 (x)[/mm] zur Funktion [mm]f(x) = \ln(1+sin(x))[/mm] an der Entwicklungsstelle [mm]x_0 = 0[/mm].

Guten Abend!

Ich habe auf dem Weg zum Taylorpolynom nun folgende Ableitungen gebildtet:

[mm]f'(x) = \frac{\cos x}{1+\sin x}[/mm]

[mm]f''(x) = \frac{-\sin x -\sin²x -\cos²x}{(1+\sin x)²}[/mm]

[mm]f'''(x) = \frac{-\cos x (1+\sin x)^2 + (\sin x +\sin² x + \cos² x) 2 \cos x (1 + \sin x)}{(1+\sinx)^4}[/mm]

Die letzte ließe sich vielleicht noch vereinfachen, aber es graut mir auf jeden Fall vor der vierten Ableitung! Gibt es da eine einfacherer Lösung oder ist mir ein Fehler unterlaufen?

Vielen Dank und schlaft recht gut!
~ Pawlow

PS: Ich habe diese Frage natürlich in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Riesenableitung bei Taylorp.: Antwort
Status: (Antwort) fertig Status 
Datum: 00:46 Mo 02.02.2009
Autor: schachuzipus

Hallo pawlow und herzlich [willkommenmr],

> Berechnen Sie das Taylorpolynom [mm]T_4 (x)[/mm] zur Funktion [mm]f(x) = \ln(1+sin(x))[/mm]
> an der Entwicklungsstelle [mm]x_0 = 0[/mm].
>  Guten Abend!
>  
> Ich habe auf dem Weg zum Taylorpolynom nun folgende
> Ableitungen gebildtet:
>  
> [mm]f'(x) = \frac{\cos x}{1+\sin x}[/mm] [ok]
>  
> [mm]f''(x) = \frac{-\sin x -\sin²x -\cos²x}{(1+\sin x)²}[/mm] [ok]

Das kannst du aber schön vereinfachen:

[mm] $\frac{-\sin(x)-\sin^2(x)-\cos^2(x)}{(1+\sin(x))^2}=\frac{-\sin(x)-(\sin^2(x)+\cos^2(x))}{(1+\sin(x))^2}=\frac{-\sin(x)-1}{(1+\sin(x))^2}=-\frac{1+\sin(x)}{(1+\sin(x))^2}=-\frac{1}{1+\sin(x)}$ [/mm]

Damit sollte sich die 3. Ableitung einfacher berechnen lassen

>  
> [mm]f'''(x) = \frac{-\cos x (1+\sin x)^2 + (\sin x +\sin² x + \cos² x) 2 \cos x (1 + \sin x)}{(1+\sinx)^4}[/mm]

Habe ich nicht mehr überprüft, würde auch mit der vereinfachten 2.Ableitung weiter machen :-)

>  
> Die letzte ließe sich vielleicht noch vereinfachen, aber es
> graut mir auf jeden Fall vor der vierten Ableitung! Gibt es
> da eine einfacherer Lösung oder ist mir ein Fehler
> unterlaufen?
>  
> Vielen Dank und schlaft recht gut!

Du auch!

>  ~ Pawlow
>  
> PS: Ich habe diese Frage natürlich in keinem Forum auf
> anderen Internetseiten gestellt.


[gutenacht]

schachuzipus

Bezug
                
Bezug
Riesenableitung bei Taylorp.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Fr 06.02.2009
Autor: pawlow

Danke! Ich habs eben erst gesehen. Hatte es fast vergessen, da ich mittlerweile die "implizite Differentation" beherrsche (beherrsche denken wir uns jetzt mal kleingedruckt!) und damit ging es auch ganz gut. Aber danke, die Vereinfaching des Terms ist ja wirklich erstaunlich. Ich hoffe, ich sehe das auch irgendwann...

Liebe Grüße
~ pawlow


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]