www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraRing, Menge der Einheiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Ring, Menge der Einheiten
Ring, Menge der Einheiten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ring, Menge der Einheiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:31 So 18.11.2007
Autor: trivialesmathe

Aufgabe
Gegeben seien eine Menge X [mm] \not= [/mm] 0 und ein Ring (R,+,*,1) mit 1. Definiere auf Ubb(X,R)= {f:X-> R: f ist Abbildung} zwei Verknüpfungen
f  [mm] \oplus [/mm] g: x-> R, x-> f(x)+ g(x) und [mm] f\otimes [/mm] g: x->R, x-> f(x) *g(x)
a) Zeigen sie, dass [mm] (Ubb(X,R),\oplus,\otimes) [/mm] wieder ein Ring mit 1 ist. Dabei darf ohne Beweis benutzt werden, dass [mm] (Ubb(X,R),\oplus) [/mm] eine Gruppe ist.
b) Bestimmen sie die Menge der Einheiten
  Ubb(X,R)*= { f [mm] \in [/mm] Ubb(X,R) : [mm] \exists [/mm] g [mm] \in [/mm] Ubb(X,R) (f [mm] \otimes [/mm] g=1)}.

Hallo,
also ich brauche dringend Hilfe bei der Aufgabe.
ich muss doch hier die Multiplikation und die Addition nachweisen, oder?
Aber wie? Wäre echt nett, wenn mir hier jemand helfen könnte. Schonmal danke...

        
Bezug
Ring, Menge der Einheiten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 So 18.11.2007
Autor: angela.h.b.


> Gegeben seien eine Menge X [mm]\not=[/mm] 0 und ein Ring (R,+,*,1)
> mit 1. Definiere auf Ubb(X,R)= {f:X-> R: f ist Abbildung}
> zwei Verknüpfungen
>   f  [mm]\oplus[/mm] g: x-> R, x-> f(x)+ g(x) und [mm]f\otimes[/mm] g: x->R,

> x-> f(x) *g(x)
>  a) Zeigen sie, dass [mm](Ubb(X,R),\oplus,\otimes)[/mm] wieder ein
> Ring mit 1 ist. Dabei darf ohne Beweis benutzt werden, dass
> [mm](Ubb(X,R),\oplus)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

eine Gruppe ist.

>  b) Bestimmen sie die Menge der Einheiten
>    Ubb(X,R)*= { f [mm]\in[/mm] Ubb(X,R) : [mm]\exists[/mm] g [mm]\in[/mm] Ubb(X,R) (f
> [mm]\otimes[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

g=1)}.

>  Hallo,
>  also ich brauche dringend Hilfe bei der Aufgabe.
> ich muss doch hier die Multiplikation und die Addition
> nachweisen, oder?

Hallo,

ich weiß nicht recht, was Du damit meinst...

Die Multiplikation und Addition sind doch vorgegeben.

Zu beweisen ist, daß die Menge Abb(X,R)= {f:X-> R: f ist Abbildung}  mit den oben definiertenVerknüpfungen ein Ring mit 1 ist.

Daher mußt Du sämtliche Axiome für "Ring mit 1" nachweisen - mit Ausnahme der Axiome für "Gruppe bzgl. \oplus ".

Da solltest Du nun erstmal zusammenstellen, was zu zeigen ist, vielleicht anschließend einen ersten Versuch unternehmen, damit man sehen kann, was Du kannst und was nicht.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]