Ringaxiome und mehr < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei $M$ eine Menge und $P(M)$ die Potenzmenge von $M$.
a) Beweisen Sie, dass [mm] $(P(M),+,\cdot [/mm] )$ mit
[mm] $A+B:=(A\cup B)\backslash (A\cap [/mm] B)$ und
[mm] A\cdot B:=A\cap [/mm] B
b)Zeigen Sie A+A=0 für alle [mm] $A\in [/mm] P(M)$.
c)Zeigen Sie für [mm] $A,B\subset [/mm] M$, dass
[mm] $M\backslash [/mm] A=1+A$ und
[mm] $A\cup B=A+B+A\cdot [/mm] B$.
d) Welche Elemente von P(M) haben einen Kehrwert?
Sie dürfen alle Beweise mit Venn-Diagramm führen. |
a)
Beweisen Sie, dass $(P(M), +, [mm] \cdot)$ [/mm] mit
[mm] $A+B:=(A\cup B)\backslash (A\cap [/mm] B)$ und
[mm] $A\cdot B:=A\cap [/mm] B$
ein kommutativer Ring ist.
Addition ist assioziativ
$+$ ist [mm] $\oplus$, [/mm] bzw. das exklusive oder. Einige Identitäten von XOR sind:
[mm] $$X\oplus [/mm] Y
= [mm] (X\cup Y)\cap (X\cap Y)^\complement
[/mm]
= [mm] (X\cap Y^\complement)\cup(X^\complement\cap [/mm] Y) [mm] (X\oplus Y)^\complement [/mm]
= [mm] (X\oplus Y^\complement)
[/mm]
[mm] =(X^\complement\oplus Y)=(X\cap Y)\cup(X^\complement\cap Y^\complement)$$
[/mm]
Dann $(A+B)+C
= [mm] ((A\oplus B)\cup C)\cap ((A\oplus B)^\complement\cup C^\complement)
[/mm]
= [mm] ((A\cap B^\complement)\cup (A^\complement\cap B)\cup C)\cap ((A\oplus B)^\complement\cup C^\complement) [/mm]
= [mm] ((A\cap B^\complement)\cup (A^\complement\cap B)\cup C)\cap ((A\cap B)\cup(A^\complement\cap B^\complement)\cup C^\complement) [/mm]
= [mm] (A\cap B\cap C)\cup(A\cap B^\complement\cap C^\complement)\cup(A^\complement\cap B\cap C^\complement)\cup(A^\complement\cap B^\complement\cap [/mm] C)$
Durch Symmetrie folgt $(A+B)+C=A+(B+C)$.
Die exklusive Disjunktion von drei Mengen heißt:
(alles ist entweder in exakt einem von den drei Mengen) oder (alles ist in der Vereinigung von allen 3 Mengen).
Wenn man die Variablen miteinander vertauscht, steht dort immer noch das selbe. Was man ja letztendlich machen würde bei der rechten Seite.
Addition ist kommutativ
[mm] $\forall A,B\in [/mm] P(M): A+B=B+A$
Zu zeigen: [mm] $(A\cup B)\backslash (A\cap B)=(B\cup A)\backslash (B\cap [/mm] A)$
[mm] $(A\cup B)=(B\cup [/mm] A)$ aus der Mengenlehre.
[mm] $(A\cap B)=(B\cap [/mm] A)$ s.o.
Eingefügt:
[mm] $(A\cup B)\backslash (A\cap B)=(A\cup B)\backslash (A\cap [/mm] B)$.
Es gibt mindestens ein [mm] $0_{P(M)}$.
[/mm]
[mm] $\forall A\in P(M):\exists B\in [/mm] P(M)$ mit $A+B=A$
Sei B die leere Menge.
So erhalten wir:
[mm] $(A\cup \emptyset)\backslash (A\cap \emptyset)=(A)\backslash (\emptyset)=A$
[/mm]
Jedes Element von $P(M)$ hat ein additives Invers.
[mm] $\forall A\in P(M):\exists [/mm] B$ mit [mm] $A+B=0_{P(M)}$
[/mm]
Vermutung: jedes Element ist zu sich selbst invers.
[mm] $(A\cup A)\backslash (A\cap A)=(A)\backslash(A)=\emptyset=0_{P(M)}$
[/mm]
Multiplikation ist assoziativ.
Für alle [mm] $A,B,C\in [/mm] P(M)$ muss gelten:
[mm] $(A\cdot B)\cdot C=A\cdot (B\cdot [/mm] C)$
[mm] $(A\cdot B)\cdot C=(A\cap B)\cap C=A\cap B\cap C=A\cap (B\cap C)=A\cdot (B\cdot [/mm] C)$
[mm] \newpage
[/mm]
Distributivgesetze für Multiplikation über Addition.
Für alle [mm] $A,B,C\in [/mm] P(M)$ muss gelten: [mm] $A\cdot (B+C)=(A\cdot B)+(A\cdot [/mm] C)$.
[mm] $A\cdot [/mm] (B+C)$
[mm] $=A\cap [/mm] (B+C)$
[mm] $=A\cap ((B\cup C)\backslash(B\cap [/mm] C))$
[mm] $=(A\cap (B\cup C))\backslash(A\cap (B\cap [/mm] C))$
[mm] $=((A\cap B)\cup (A\cap C))\backslash(A\cap B\cap [/mm] C)$
[mm] $=((A\cap B)\cap (A\cap C))\backslash (A\cap B\cap A\cap [/mm] C)$
[mm] $=(A\cap B)+(A\cap C)=(A\cdot B)+(A\cdot [/mm] C)$
Das zweite Distributivgesetz gilt, weil [mm] "$\cap$" [/mm] kommutativ ist und das erste Gesetz bereits gezeigt wurde.
Nun muss lediglich noch gezeigt werden, dass die Multiplikation kommutativ ist.
Dazu muss gezeigt werden, dass für alle [mm] $A,B\in [/mm] P(M)$ folgendes gilt:
[mm] $A\cdot B=B\cdot [/mm] A$
[mm] $A\cdot B=A\cap B=B\cap A=B\cdot [/mm] A$
Somit ist $(P(M), +, [mm] \cdot)$ [/mm] ein kommutativer Ring.
b)
Dies wurde schon in Teilaufgabe a) gezeigt. Jedes Element [mm] $X\in [/mm] P(M)$ ist sein eigenes additives Invers.
[mm] $(A\cup A)\backslash (A\cap A)=(A)\backslash(A)=\emptyset=0_{P(M)}$
[/mm]
c)
Erstmal ermitteln wir, wie [mm] $1_{P(M)}$ [/mm] aussieht.
Die multiplikative Identität muss folgendes erfüllen:
Für alle [mm] $A\in P(M)$:$A\cdot [/mm] 1=A$
Aber zunächst definiere ich das universale Set für diese Aufgabe als $P(M)$.
[mm] $A\cdot 1=A\cap 1=A\cap [/mm] P(M)=A$. Also ist $P(M)$ die 1.
Zu zeigen:
[mm] $M\backslash [/mm] A=1+A$
[mm] $1+A=(1\cup A)\backslash (1\cap A)=(1\backslash(1\cap A))\cup (A\backslash(1\cap A))=(1\backslash A)\cup (\emptyset)=1\backslash A=P(M)\backslash A=M\backslash [/mm] A$ Dies stimmt nur, wenn $P(M)=M$, was nicht der Fall ist. Daher stimmt das nicht.
Außerdem zu zeigen:
[mm] $A\cup B=A+B+A\cdot [/mm] B$
[mm] $x\in A+B+A\cdot [/mm] B$ heißt ja:
x ist Element von A oder B, aber nicht beides auf einmal.
x ist außerdem Element von $(A+B)$ oder [mm] $A\cdot [/mm] B$, aber nicht beides auf einmal.
Also entweder ist x in [mm] $(A\cup B)\backslash (A\cap [/mm] B)$ oder es ist in [mm] $A\cap [/mm] B$.
Dies bedeutet nichts anderes als dass x in [mm] $A\cup [/mm] B$ ist.
d) Nur ein Element in $P(M)$ hat einen Kehrwert.
Damit es einen gibt, müsste es für [mm] $A\in [/mm] P(M)$ ein [mm] $A^{-1}\in [/mm] P(M)$ geben mit [mm] $A\cdot A^{-1}=1$.
[/mm]
Allerdings ist eine Schnittmenge per Definition immer so klein, wie ihre kleinste Menge.
Da nur [mm] $1\cap [/mm] 1=1$ ist, hat nur die 1 einen Kehrwert.
Für alle anderen Mengen [mm] $A\not= [/mm] 1$ würde [mm] $A\cap 1=A\not= [/mm] 1$ herauskommen.
Bei der c) ist mir das nicht ganz klar warum ich nicht auf das komme was gezeigt werden soll. Hab ich die universale Menge falsch ausgewählt?
Ich mag keine Venndiagramme, da die für mich nicht wirklich etwas beweisen.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:09 So 06.11.2016 | Autor: | hippias |
Ich habe keine Lust mir die gesamte Lösung genauer anzusehen; beim Überfliegen ist mir aber kein Problem aufgefallen.
zu c) Deine Wahl für die $1$ macht keinen Sinn: [mm] $P(M)\not\in [/mm] P(M)$. Jedoch bin ich mir ziemlich sicher, dass Du eine bessere finden wirst, mit der sich dann die Behauptung auch beweisen lässt.
Also: Für welche Teilmenge [mm] $1\subseteq [/mm] M$ gilt [mm] $1\cap [/mm] A= A$ für alle [mm] $A\subseteq [/mm] M$?
|
|
|
|
|
Naja dann geht ja nur M. (auch schon wegen der zu beweisenden Aussage)
richtig?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:52 So 06.11.2016 | Autor: | felixf |
Moin!
> Naja dann geht ja nur M. (auch schon wegen der zu
> beweisenden Aussage)
Genau. Und $M$ liegt ja auch in $P(M)$, womit du die 1 gefunden hast. Damit solltest du c) jetzt lösen können.
LG Felix
|
|
|
|