Ringhomomorphismus < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:24 Mi 17.11.2010 | Autor: | clemenum |
Aufgabe | Sei [mm] $\phi: [/mm] R->S$ ein surjektiver Ringhomomorphismus. Zeige [mm] $\phi(1_R)=1_S$ [/mm] |
Beweis:
Sei die Vorraussetzung wahr. Dann gilt:
[mm] $\phi(1_R)=\phi(1_R\cdot 1_R)=\phi(1_R)\cdot \phi(1_R)$ [/mm] und damit
[mm] $\phi(1_R)\cdot 1_S=\phi(1_R)\cdot \phi(1_R)$ [/mm] und nach der Kürzungsregel folgt schließlich [mm] $1_S= \phi(1_R)$ [/mm] und aus der Symmetrie der "=" Relation folgt schließlich [mm] $\phi(1_R)=1_S$ [/mm] q.e.d.
Ich wundere mich, dass ich die Surjektivität nicht gebraucht habe, wüßte aber auch nicht, wo diese nutzen könnte.
Habe ich hier etwas übersehen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:33 Mi 17.11.2010 | Autor: | felixf |
Moin!
> Sei [mm]\phi: R->S[/mm] ein surjektiver Ringhomomorphismus. Zeige
> [mm]\phi(1_R)=1_S[/mm]
>
> Beweis:
> Sei die Vorraussetzung wahr. Dann gilt:
> [mm]\phi(1_R)=\phi(1_R\cdot 1_R)=\phi(1_R)\cdot \phi(1_R)[/mm] und
> damit
> [mm]\phi(1_R)\cdot 1_S=\phi(1_R)\cdot \phi(1_R)[/mm] und nach der
> Kürzungsregel folgt schließlich [mm]1_S= \phi(1_R)[/mm] und aus
Es gibt in Ringen allerdings keine Kuerzungsregel.
Ausserdem: du hast die Surjektivitaet gar nicht gebraucht. Die ist hier aber zwingend, wenn [mm] $\phi$ [/mm] nicht surjektiv ist muss nicht [mm] $\phi(1_R) [/mm] = [mm] 1_S$ [/mm] sein. Es gibt recht einfache Gegenbeispiele, etwa die Abbildung [mm] $\IZ \to \IZ \times \IZ$, [/mm] $x [mm] \mapsto [/mm] (x, 0)$.
Setze $e := [mm] \phi(1_R)$. [/mm] Zeige, dass $a e = e a = a$ ist fuer alle $a [mm] \in [/mm] S$. Dann muss $e = [mm] 1_S$ [/mm] sein.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:11 Mi 17.11.2010 | Autor: | clemenum |
Danke für deine Antwort und Hinweis
Ich hoffe folgende Frage erzeugt nicht Verdacht meiner Unkenntnis, doch wundert es mich, dass in Ringen nicht unbedingd die Kürzungsregel gelten muss. In jeder Gruppe gilt doch die Kürzungsregel und jeder Ring ist insbesondere eine Gruppe, also...
Wenn ich zeigen soll, dass mit $e:= [mm] \phi(1_R) [/mm] ae=ea=e [mm] \forall a\in [/mm] S$ gilt, dann reicht mir die Surjektivität alleine aus, dann brauche ich darauf nicht mehr [mm] $\phi$ [/mm] anwenden. Habe ich recht?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:25 Do 18.11.2010 | Autor: | felixf |
Moin!
> Danke für deine Antwort und Hinweis
>
> Ich hoffe folgende Frage erzeugt nicht Verdacht meiner
> Unkenntnis, doch wundert es mich, dass in Ringen nicht
> unbedingd die Kürzungsregel gelten muss. In jeder Gruppe
> gilt doch die Kürzungsregel und jeder Ring ist
> insbesondere eine Gruppe, also...
Ein Ring ist eine Gruppe bzgl. der Addition. In der additiven Gruppe kannst du sehr wohl kuerzen.
Bezueglich der Multiplikation ist der Ring jedoch nie eine Gruppe (ausser fuer den Nullring -- aber der interessiert gerade nicht, der ist zu speziell). Zum Beispiel gilt doch immer $0 [mm] \cdot [/mm] 1 = 0 [mm] \cdot [/mm] 0$; wenn man kuerzen koennte, folgt daraus $0 = 1$.
Bzgl. der Multiplikation kuerzen kannst du (im klassischen Sinne) genau dann, wenn der Ring nullteilerfrei ist, aus $a b = 0$ also folgt $a = 0$ oder $b = 0$.
> Wenn ich zeigen soll, dass mit [mm]e:= \phi(1_R) ae=ea=e \forall a\in S[/mm]
> gilt, dann reicht mir die Surjektivität alleine aus, dann
> brauche ich darauf nicht mehr [mm]\phi[/mm] anwenden. Habe ich
> recht?
Wie meinst du das? (Ich tippe eher auf nein, aber wenn du so unkonkret bleibst kann man das nicht genau sagen.)
LG Felix
|
|
|
|
|
Ich habe gemeint, dass die Anwendung von [mm] $\phi$ [/mm] auf $ae=ea=e [mm] \forall a\in [/mm] S$ doch unerheblich ist, ich wüsste auch nicht, wie ich es hier ausnutzen soll, dass es sing um einen Ringhomomorphismus handelt. Letzteres folgt doch sofort aus der Definiton der Surjektivität. Ich wüsste nicht, wie ich diesen Sachverhalt noch weiter logisch zerlegen könnte; $ae=ea$ ist doch für alle Ringe zwangsläufig gültig, da brauche ich doch nichts zu zeigen. Und wenn dies zu zeigen wäre, wüßte ich nicht, welchen Implikationsschritt ich noch einbauen könnte, da es meiner Meinung nach sofort aus den Axiomen folgt. Hab ich recht?
|
|
|
|
|
Hallo liebe KollegInnen und LehrerInnen!
Hier meine Zwischenbilianz zur Aufgabe:
Sei [mm] $s\in [/mm] S$. Da [mm] $\phi$ [/mm] surjektiv [mm] $\exists r\in [/mm] R: [mm] \phi(r)=s$ [/mm]
[mm] $\Rightarrow \exists r\in [/mm] R: [mm] \phi(r) [/mm] = [mm] 1_S$ [/mm] (Aus diesem folgt nur, dass das Einselement von S überhaupt getroffen wird und nicht, dass es vom Einselement von R getroffen wird, daher muss man hier noch den Ringhomomorphismus benutzen)
Wegen [mm] $\phi(r)\cdot \phi(r) [/mm] = [mm] \phi(rr) \Rightarrow 1_S\cdot 1_S=\phi(rr) \Rightarrow 1_S= \phi(rr). \Rightarrow \phi [/mm] (r)= [mm] 1_S=\phi(rr)$ [/mm]
Da [mm] $\phi$ [/mm] nicht injektiv sein muss, folgt nicht (zwangsläufig) $r= rr$ und somit muss r auch nicht das neutrale Element sein.
Ich kann somit nicht folgern, dass [mm] $1_S$ [/mm] auch tatsächlich von [mm] $1_R$ [/mm] getroffen wird und bitte euch um Rat. :)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Sa 20.11.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:21 Sa 20.11.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|