www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungRotation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Rotation
Rotation < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:53 Mi 02.11.2011
Autor: Kuriger

Hallo

Der graph der Funktion f(x) = [mm] \bruch{1}{x^2} [/mm] rotieren um die x-Achse. Welches Volumen besitzt der entstehende Körper mit 1 [mm] \le [/mm] x

Mein Problem ist, dass der Rotationskörpe nach oben nicht begrenzt is tund entsprechend nicht weiss welche Integrationsgrenze neben 1 einzusetzen ist

Danke





        
Bezug
Rotation: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Mi 02.11.2011
Autor: fred97


> Hallo
>  
> Der graph der Funktion f(x) = [mm]\bruch{1}{x^2}[/mm] rotieren um
> die x-Achse. Welches Volumen besitzt der entstehende
> Körper mit 1 [mm]\le[/mm] x
>  
> Mein Problem ist, dass der Rotationskörpe nach oben nicht
> begrenzt is tund entsprechend nicht weiss welche
> Integrationsgrenze neben 1 einzusetzen ist

Schränke f zunächst auf das Intervall [1,b] ein und berechne

                [mm] $V(b):=\pi \cdot \int_{1}^{b} (f(x))^2 \mathrm{d}x [/mm] $.

Dann [mm] \limes_{b\rightarrow\infty}V(b) [/mm]

FRED

>  
> Danke
>  
>
>
>  


Bezug
                
Bezug
Rotation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:05 Mi 02.11.2011
Autor: Kuriger

Hallo

Sehe ich dann etwas, oder was muss ich nach mit der INfos dass b gegen unendlich geht anfangen?


Gruss Kuriger

Bezug
                        
Bezug
Rotation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Mi 02.11.2011
Autor: fred97

$ [mm] \limes_{b\rightarrow\infty}V(b) [/mm] $ liefert Dir das gesuchte Volumen

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]