www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenRotation Vektorfeld
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Rotation Vektorfeld
Rotation Vektorfeld < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotation Vektorfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 So 27.04.2014
Autor: racy90

Hallo

Ich habe folgende Aufgabe zu lösen

Gegeben ist folgendes Vektorfeld

[mm] \vektor{\bruch{x}{(\wurzel{x^2+y^2+z^2})^{\alpha /2} \\ \bruch{y}{(\wurzel{x^2+y^2+z^2})^{\alpha /2}}\\ \bruch{z}{(\wurzel{x^2+y^2+z^2})^{\alpha /2}}}} [/mm]


Nun soll ich jene Werte für [mm] \alpha [/mm] bestimmen für die rot V =0 gilt

rot [mm] v=\vektor{wy-vz \\ -wx+uz\\vx-uy} [/mm]

Nun habe ich mir meine Partiellen Ableitungen gebildet

[mm] Wy=\bruch{-2zy\alpha /2}{(x^2+y^2+z^2)^{3\alpha /2}} [/mm]
[mm] Vz=\bruch{-2zy\alpha /2}{(x^2+y^2+z^2)^{3\alpha /2}} [/mm]
[mm] Wx=\bruch{-2zx\alpha /2}{(x^2+y^2+z^2)^{3\alpha /2}} [/mm]
[mm] Uz=\bruch{-2zx\alpha /2}{(x^2+y^2+z^2)^{3\alpha /2}} [/mm]
[mm] Vx=\bruch{-2yx\alpha /2}{(x^2+y^2+z^2)^{3\alpha /2}} [/mm]
[mm] Uy=\bruch{-2yx\alpha /2}{(x^2+y^2+z^2)^{3\alpha /2}} [/mm]

Somit wäre rot v ja immer  ,weil ja gar nicht so weit komme ein [mm] \alpha [/mm] auszuwählen

        
Bezug
Rotation Vektorfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 So 27.04.2014
Autor: leduart

Hallo
die Nenner deiner Ableitungen sind falsch die Potenz ist [mm] \alpha/2+1 [/mm]  , und ich nehme an, dass die Wurzeln in der Aufgabe falsch sind. sonst hast du recht, also ist die Antwort sehr einfach- dein Feld schreibt man einfacher als [mm] \bruch{\vec{r}}{|r|^{\alpha}} [/mm] d.h. du hast ein rein radiales Feld, die Anschaung bestätigt deine Rechnung!
Gruss leduart

Bezug
                
Bezug
Rotation Vektorfeld: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 So 27.04.2014
Autor: racy90

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]