www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungRotationskörper um x-Achse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Rotationskörper um x-Achse
Rotationskörper um x-Achse < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationskörper um x-Achse: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 13:27 Do 24.07.2008
Autor: jakob99

Aufgabe
Bestimme das Volumen des Rotationskörpers, der ensteht, wenn der Graph von sin [mm] :[0,\pi]\to \IR [/mm] um die x-Achse rotiert.

Hallo,
ich habe folgendes Problem.

Die Formel lautet V= [mm] \pi \integral_{a}^{b}{f(x)^2 dx} [/mm]

[mm] \Rightarrow [/mm]  V= [mm] \pi \integral_{0}^{\pi}{(sin x)^2 dx} [/mm]

Jetzt mein Problem:
Ich bekomme es einfach nicht hin, die Stammfunktion von [mm] sin^2 [/mm] (x) zu bilden.

Ich muss doch die partielle Integration benutzen, oder?
Die verstehe ich aber überhaupt nicht.

Wäre super, es könnte mir jemand erklären.

vielen Dank,

Jakob




        
Bezug
Rotationskörper um x-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Do 24.07.2008
Autor: angela.h.b.


> Jetzt mein Problem:
>  Ich bekomme es einfach nicht hin, die Stammfunktion von
> [mm]sin^2[/mm] (x) zu bilden.
>  
> Ich muss doch die partielle Integration benutzen, oder?
>  Die verstehe ich aber überhaupt nicht.

Hallo,

ja, mit partieller Integration kommst Du zum Ziel.

Ich nehme an und hoffe sehr, daß Du schon ein bißchen etwas über partielle Integration nachgelesen hast, []hier findest Du's auch, (Herleitung, Beispiel, Methoden angucken bzw. durcharbeiten (!).)

Zu Deinem Beispiel:

setze u=sinx,   v'=sin x,

bestimme u' und v (also eine Stammfunktion zu v'), und wende das, was geschrieben steht, an.

Wenn Du das getan hast, zeig mal, wie es nun aussieht. Du bist dann nah  am Ziell, es kommt noch ein kl. Trick, den sagen wir Dir dann. (Es ist dafür nützlich zu wissen, daß cos²+sin²=1 gilt)

Gruß v. Angela





Bezug
                
Bezug
Rotationskörper um x-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 Do 24.07.2008
Autor: jakob99

O.K. ich versuche mal wie weit ich komme:

[mm] \integral u'*v=u*v-\integral [/mm] u*v'

in nehme:
u'=sinx  und  v=sinx

[mm] \Rightarrow -cosx*sinx-\integral [/mm] -cosx*cosx

weiter weiß ich nicht....


Bezug
                        
Bezug
Rotationskörper um x-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Do 24.07.2008
Autor: AbraxasRishi

Hallo!

Bis hier sieht es ja richtig gut aus!
Du musst nur noch berücksichtigen, dass [mm] cos^2(x)=1-sin^2(x) [/mm] gilt.

So steht dann:

[mm] \integral{sin^2(x)dx}=-cos(x)*sin(x)+\integral{1-sin^2(x)dx} [/mm]

[mm] =\integral{sin^2(x)dx}=-cos(x)*sin(x)+\integral{1dx}-\integral{sin^2(x)dx} [/mm]

[mm] =2*\integral{sin^2(x)dx}=-cos(x)*sin(x)+\integral{1dx} [/mm]

Jetz fehlen dir nur mehr 2 kleine Schritte zur Berechnung der Stammfunktion.Schaffst du es jetzt?


Gruß

Angelika


Bezug
                                
Bezug
Rotationskörper um x-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Do 24.07.2008
Autor: jakob99


> Hallo!
>  
> Bis hier sieht es ja richtig gut aus!
>  Du musst nur noch berücksichtigen, dass
> [mm]cos^2(x)=1-sin^2(x)[/mm] gilt.
>  
> So steht dann:
>  
> [mm]\integral{sin^2(x)dx}=-cos(x)*sin(x)+\integral{1-sin^2(x)dx}[/mm]
>  
> [mm]=\integral{sin^2(x)dx}=-cos(x)*sin(x)+\integral{1dx}-\integral{sin^2(x)dx}[/mm]

Hier hast du einfach auf beiden Seiten, da es ja eine Gleichung ist, [mm] +\integral{sin^2(x)dx} [/mm] gerechnet und so hast du erhalten [mm] 2*\integral{sin^2(x)dx} [/mm]
Richtig?

>  
> [mm]=2*\integral{sin^2(x)dx}=-cos(x)*sin(x)+\integral{1dx}[/mm]
>  
> Jetz fehlen dir nur mehr 2 kleine Schritte zur Berechnung
> der Stammfunktion.Schaffst du es jetzt?

Ich hoffe mal:
[mm] 2*\integral{sin^2(x)dx}=-cos(x)*sin(x)+x [/mm]
Dann einfach geteilt durch 2
[mm] \Rightarrow \integral{sin^2(x)dx}=1/2(x-cos(x)*sin(x)) [/mm]
Korrekt?


>  
>
> Gruß
>  
> Angelika
>  

Wenn ja, vielen vielen Dank für deine (bzw. eure) Mühen.

Bezug
                                        
Bezug
Rotationskörper um x-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 Do 24.07.2008
Autor: schachuzipus

Hallo Jakob,

> > Hallo!
>  >  
> > Bis hier sieht es ja richtig gut aus!
>  >  Du musst nur noch berücksichtigen, dass
> > [mm]cos^2(x)=1-sin^2(x)[/mm] gilt.
>  >  
> > So steht dann:
>  >  
> >
> [mm]\integral{sin^2(x)dx}=-cos(x)*sin(x)+\integral{1-sin^2(x)dx}[/mm]
>  >  
> >
> [mm]=\integral{sin^2(x)dx}=-cos(x)*sin(x)+\integral{1dx}-\integral{sin^2(x)dx}[/mm]
>  
> Hier hast du einfach auf beiden Seiten, da es ja eine
> Gleichung ist, [mm]+\integral{sin^2(x)dx}[/mm] gerechnet und so hast
> du erhalten [mm]2*\integral{sin^2(x)dx}[/mm] [ok]
>  Richtig?

Ja, ganz recht

>
> >  

> > [mm]=2*\integral{sin^2(x)dx}=-cos(x)*sin(x)+\integral{1dx}[/mm]
>  >  
> > Jetz fehlen dir nur mehr 2 kleine Schritte zur Berechnung
> > der Stammfunktion.Schaffst du es jetzt?
>  Ich hoffe mal:
>  [mm]2*\integral{sin^2(x)dx}=-cos(x)*sin(x)+x[/mm] [ok]
>  Dann einfach geteilt durch 2
>  [mm]\Rightarrow \integral{sin^2(x)dx}=1/2(x-cos(x)*sin(x))[/mm] [ok]
>  
> Korrekt?

Ja, so passt es!

>  
>
> >  

> >
> > Gruß
>  >  
> > Angelika
>  >  
> Wenn ja, vielen vielen Dank für deine (bzw. eure) Mühen.

Und wenn nicht? ;-)


LG

schachuzipus

Bezug
                                                
Bezug
Rotationskörper um x-Achse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Do 24.07.2008
Autor: jakob99

Dann hätte ich noch weiter Fragen müssen....

Aber letztendlich hätte ich mich dann nochmal bedankt.

Einen schönen Tag noch,

Jakob

Bezug
        
Bezug
Rotationskörper um x-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Do 24.07.2008
Autor: abakus


> Bestimme das Volumen des Rotationskörpers, der ensteht,
> wenn der Graph von sin [mm]:[0,\pi]\to \IR[/mm] um die x-Achse
> rotiert.
>  Hallo,
>  ich habe folgendes Problem.
>  
> Die Formel lautet V= [mm]\pi \integral_{a}^{b}{f(x)^2 dx}[/mm]
>  
> [mm]\Rightarrow[/mm]  V= [mm]\pi \integral_{0}^{\pi}{(sin x)^2 dx}[/mm]
>  
> Jetzt mein Problem:
>  Ich bekomme es einfach nicht hin, die Stammfunktion von
> [mm]sin^2[/mm] (x) zu bilden.
>  
> Ich muss doch die partielle Integration benutzen, oder?

Hallo,
wenn du die Additionstheoreme und speziell die Doppelwinkelformeln kennst, geht es ganz einfach.
Es ist cos(2x)=cos²x-sin²x, und wegen cos²x=1-sin²x wird daraus
cos(2x)=1-2sin²x. Umstellen nach sin²x liefert
[mm] sin²x=\bruch{1}{2}-\bruch{cos(2x)}{2}. [/mm]
Das müsstest du problemlos integrieren können.
Gruß Abakus


>  Die verstehe ich aber überhaupt nicht.
>  
> Wäre super, es könnte mir jemand erklären.
>  
> vielen Dank,
>  
> Jakob
>  
>
>  


Bezug
        
Bezug
Rotationskörper um x-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Do 24.07.2008
Autor: AbraxasRishi

Hallo!

Alternativ kommst du hier aber auch durch einfaches Umformen zum Ziel.
Nach den Additionstheoremen gilt:

[mm] sin^2(x)=\bruch{1-cos(2x)}{2} [/mm]

Also löse einfach dieses Integral:

[mm] \bruch{1}{2}*\integral{1dx}-\bruch{1}{2}*\integral{cos(2x)dx} [/mm]

Als Stammfunktion erhälst du so [mm] \bruch{x}{2}-\bruch{sin(2x)}{4}+C [/mm]

was du mit der Beziehung sin(2x)=2sin(x)*cos(x) ohne weiteres nach:

[mm] \bruch{x}{2}-\bruch{sin(x)*cos(x)}{2}+C [/mm] umformen kannst,


Gruß

Angelika

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]