www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungRotationsvolumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Rotationsvolumen
Rotationsvolumen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationsvolumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Mo 26.10.2009
Autor: coucou

Aufgabe
Der Graph K der Funktion f begrent mit der x_achse eine Fläche, die um die x-Achse rotiert. Skizzieren Sie den Graphen K und berechnen Sie das Volumen des entstehenden Drehkörpers.

[mm] f(x)=3x-1/2x^2 [/mm]

Hallo!

ALso, ich hab jetzt erstmal die Nullstellen ausgerechnet, um die beiden Grenzen für das Intervall zu bekommen. Da hab ich Null und Sechs raus. Klingt ja ganz plausibel.
Wenn ich die Funktion dann quadrieren bekomme ich [mm] 9x^2-1/4x^4. [/mm] Die Stammfunktion ist dann also [mm] 3x^3-1/20x^5 [/mm]
Dann mach ich ganz normal F(6)-F(0), vergesse auch das Pi nicht und erhalte 1296/2 mal Pi.
Kommt da so ein doofer Bruch raus oder hab ich mich vertan?
Danke!

        
Bezug
Rotationsvolumen: binomische Formel
Status: (Antwort) fertig Status 
Datum: 15:27 Mo 26.10.2009
Autor: Roadrunner

Hallo coucou!


Das Ergebnis Deiner Quadratur des Funktionstermes ist falsch. du musst hier schon die MBbinomischen Formeln berücksichtigen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Rotationsvolumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Mo 26.10.2009
Autor: coucou

aber es ist doch [mm] x^3 [/mm]
muss ich das dann aufteilen oder wie?


Bezug
                        
Bezug
Rotationsvolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mo 26.10.2009
Autor: Steffi21

Hallo, bei Rotation um die x-Achse benötigst du

[mm] V=\pi*\integral_{a}^{b}{(f(x))^{2} dx} [/mm]

[mm] V=\pi*\integral_{0}^{6}{9x^{2}-3x^{3}+\bruch{1}{4}x^{4} dx} [/mm]

du solltest dir, wie vom Roadrunner schon gesagt, die Binomischen Formeln einprägen, jetzt Stammfunktion machen, die Grenzen 0 und 6 sind korrekt, was du aufteilen möchtest ist mir nicht klar,

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]