Rücktransport < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hi!
Wir haben in der Vorlesung folgendes für einen Rücktransport [mm]\gamma'[/mm] bewiesen:
[mm]d(\gamma'w)=\gamma'(dw) \quad \forall p-Formen\ w[/mm]
Beim Beweis sind wir so vor gegangen:
Zunächst sei g eine 0-Form:
[mm]d(\gamma'g)=d(g\circ \gamma)=\summe_{j=1}^{n}\summe_{i=1}^{n}\bruch{\partial g}{\partial y_{i}}(\gamma(x))\bruch{\partial \gamma_{i}}{\partial x_{j}}(x)dx_{j} [/mm]
andererseits [mm]\gamma'(dg)=\gamma'(\summe_{i=1}^{n}\bruch{\partial g}{\partial y_{i}}dy_{i})=\summe_{i=1}^{n}\gamma'(\bruch{\partial g}{\partial y_{i}})\gamma'(dy_{i})=\summe_{i=1}^{n}(\bruch{\partial g}{\partial y_{i}}\circ \gamma) \gamma'(dy_{i})[/mm]
Es gilt:
[mm](\gamma'(dy_{i}))(x)(v)=(dy_{i}))(\gamma(x))(D\gamma(x)v)=(\summe_{j=1}^{n}\bruch{\partial \gamma_{i}}{\partial x_{j}}(x)dx_{j}[/mm]
Daraus folgt die Behauptung für alle 0-Formen
Nun sei w aus den p-Formen allgemein:
Dann gilt: [mm]d(\gamma'w)=d \gamma'(\summe_{I}\alpha_{I}dy_{I})=d \summe_{I} \gamma'(\alpha_{I}) \gamma'(dy_{I})[/mm]
Es gilt:
[mm]\gamma'(dy_{I})=\gamma'(dy_{i_{1}} \wedge.....\wedge dy_{i_{p}})=\gamma'(dy_{i_{1}}) \wedge.....\wedge \gamma'dy_{i_{p}})=\summe_{j_{1}=1}^{n}.....\summe_{j_{p}=1}^{n}\bruch{\partial \gamma_{i_{1}}}{\partial x_{j_{1}}}*....*\bruch{\partial \gamma_{i_{p}}}{\partial x_{j_{p}}}dx_{j_{1}} \wedge... \wedge dx_{j_{p}}[/mm]
Ab hier verstehe ich den Beweis dann nicht mehr:
....[mm]\Rightarrow d\gamma'(dy_{I})=0[/mm]
Ferner:
[mm]\gamma'(dy_{I})=d(\gamma'y_{I})[/mm]
Und es folgt:
[mm]d \summe_{I} \gamma'(\alpha_{I}) \gamma'(dy_{I})=d \summe_{I} \gamma'(\alpha_{I}) d(\gamma'y_{I})=\summe_{I}d\gamma'(\alpha_{I}) \wedge d(\gamma'y_{I})= \summe_{I}\gamma'(d\alpha_{I}) \wedge \gamma'(dy_{I})=\gamma' (\summe_{I}d(\alpha_{I}) \wedge dy_{I}))=\gamma'(dw).[/mm]
Kann mir von euch bitte jemand erklären was da passiert, besonders bei dem Punkt [mm]\gamma'(dy_{I})[/mm]?
Ich steig einfach nicht dahinter, was ich damit bezwecke?...
Außerdem wäre für mich [mm]\summe_{j_{1}=1}^{n}.....\summe_{j_{p}=1}^{n}\bruch{\partial \gamma_{i_{1}}}{\partial x_{j_{1}}}*....*\bruch{\partial \gamma_{i_{p}}}{\partial x_{j_{p}}}dx_{j_{1}} \wedge... \wedge dx_{j_{p}}=0[/mm], denn z.B. für p=2, n=3 gilt:
[mm]\summe_{j_{1}=1}^{3}\summe_{j_{2}=1}^{3}\bruch{\partial \gamma_{i_{1}}}{\partial x_{j_{1}}}}*\bruch{\partial \gamma_{i_{p}}}{\partial x_{j_{2}}}dx_{j_{1}} \wedge dx_{j_{2}}=\bruch{\partial \gamma_{i_{1}}}{\partial x_{1}}}*\bruch{\partial \gamma_{i_{p}}}{\partial x_{1}}dx_{1} \wedge dx_{1}+\bruch{\partial \gamma_{i_{1}}}{\partial x_{1}}}*\bruch{\partial \gamma_{i_{p}}}{\partial x_{2}}dx_{1} \wedge dx_{2}+\bruch{\partial \gamma_{i_{1}}}{\partial x_{1}}}*\bruch{\partial \gamma_{i_{p}}}{\partial x_{3}}dx_{1} \wedge dx_{3}+....+\bruch{\partial \gamma_{i_{1}}}{\partial x_{3}}}*\bruch{\partial \gamma_{i_{p}}}{\partial x_{3}}dx_{3} \wedge dx_{3}=...=0[/mm]
denn: [mm] f \wedge f = 0; \quad f \wedge g=-(g \wedge f) [/mm]. Ist das richtig?
Gruß
Deuterinomium
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:08 Di 25.09.2007 | Autor: | Hund |
Hallo,
zuerst wurde die Behauptung für 0-Formen bewiesen.
Dann wurde gezeigt, dass y´(dyI)=d(y´yI).
Danach wurde für beliebige Formen d(y´w) nach Definition ausgerechnet. Wenn man das wie unten aufschreibt, hat man ja nur Ausdrücke wie oben für die ja die Bahauptung gezeigt wurde.
Ich hoffe, es hat dir geholfen.
Gruß
Hund
|
|
|
|
|
Hi!
Danke für die schnelle Antwort, aber was in dem Beweis passiert war mir klar. Was ich nicht verstehe das sind die Rechnungen (besonders die die ich angemerkt habe) die wir für den Beweis gemacht haben.
Besonders die Zeile mit der null!
Kannst du mir dazu vielleicht auch was sagen?
Gruß
Deuterinomium
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:20 Fr 28.09.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|