RuinWA Spieldauer < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Hallo,
kann mir jemand bei der Aufgabe helfen? Wäre Super.
Jemand hat ein Startkapital $x$ und spielt ein faires Münzwürfspiel. Zeigt die Münze Zahl, gewinnt er 1 €, zeigt sie Kopf, verliert er 1€. Der Spieler möchte aufhören wenn er insgesamt $b$ € hat. Er muss aufhören, wenn er nur noch den Betrag $a$ hat.
es gilt $a<x<b$ sind ganze Zahlen. Die Wahrscheilichkeit beim Spiel Kopf zu erhalten liegt bei p. [mm] $X_n$ [/mm] sei das Ergebnis des n-ten Wurfs und [mm] $S_n:= x+X_1+...+X_n$ [/mm] der Kapitalstand nach n runden. Seien zwei Zufallsvariablen wie folgt definiert:
[mm] $T_a:= [/mm] min(n [mm] \in \mathbb{N}| S_n=a)$ [/mm] ist die Zeit zum Ruin und [mm] $T_b:= [/mm] min(n [mm] \in \mathbb{N}| S_n=b)$ [/mm] die Zeit zum Ausstieg mit Gewinn.
[mm] $T:=T_a \wedge T_b$ [/mm] die Zeit, bei der Feststeht ob der Spieler als Gewinner oder Verlierer aufhört.
Es gilt für $p [mm] \neq \frac{1}{2} [/mm] $ die Ruinwahrscheinlichkeit
[mm] $r_{x} [/mm] := [mm] P_{x} \left\{ T=T_{a} \right\} =\frac{z^{x}-z^{a} }{z^{a} -z^{b} }$
[/mm]
mit $z=(1-p)/p$ .
a) warum ist [mm] $t<\infty$ [/mm] fast sicher?
b) Berechne die erwartete Spieldauer E[t] |
a) Ist es so, weil die Funktion Integrierbar ist? Und somit < unendlich ist?
b) kann mir jemand hierfür ein Beispiel in Zahlen nennen? Z.B: für a:= 0 Startkapital x=100 Zielkapital b=1000? Vielleicht verstehe ich es so dann... Mit "Zahlenbeispiele"
Ich danke euch
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 Sa 01.02.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:20 So 02.02.2014 | Autor: | abakus |
> Hallo,
>
> kann mir jemand bei der Aufgabe helfen? Wäre Super.
>
> Jemand hat ein Startkapital [mm]x[/mm] und spielt ein faires
> Münzwürfspiel. Zeigt die Münze Zahl, gewinnt er 1 €,
> zeigt sie Kopf, verliert er 1€. Der Spieler möchte
> aufhören wenn er insgesamt [mm]b[/mm] € hat. Er muss aufhören,
> wenn er nur noch den Betrag [mm]a[/mm] hat.
> es gilt [mm]a
> Spiel Kopf zu erhalten liegt bei p. [mm]X_n[/mm] sei das Ergebnis
> des n-ten Wurfs und [mm]S_n:= x+X_1+...+X_n[/mm] der Kapitalstand
> nach n runden. Seien zwei Zufallsvariablen wie folgt
> definiert:
> [mm]T_a:= min(n \in \mathbb{N}| S_n=a)[/mm] ist die Zeit zum Ruin
> und [mm]T_b:= min(n \in \mathbb{N}| S_n=b)[/mm] die Zeit zum
> Ausstieg mit Gewinn.
>
> [mm]T:=T_a \wedge T_b[/mm] die Zeit, bei der Feststeht ob der
> Spieler als Gewinner oder Verlierer aufhört.
> Es gilt für [mm]p \neq \frac{1}{2}[/mm] die
> Ruinwahrscheinlichkeit
>
> [mm]r_{x} := P_{x} \left\{ T=T_{a} \right\} =\frac{z^{x}-z^{a} }{z^{a} -z^{b} }[/mm]
Was ist z?
Bedeutet [mm] $p\ne \frac12$, [/mm] dass diese Formel auch für unfaire Spiele gilt (oder ist das Spiel gar nicht fair)?
>
> mit [mm]z=(1-p)/p[/mm] .
>
> a) warum ist [mm]t<\infty[/mm] fast sicher?
> b) Berechne die erwartete Spieldauer E[t]
> a) Ist es so, weil die Funktion Integrierbar ist? Und somit < unendlich ist?
>
> b) kann mir jemand hierfür ein Beispiel in Zahlen nennen? Z.B: für a:= 0 Startkapital x=100 Zielkapital b=1000? Vielleicht verstehe ich es so dann... Mit "Zahlenbeispiele"
Hallo,
simuliere dir doch selbst ein solches Spiel z.B. mit x=3, a=0 und b=6.
Gruß Abakus
>
>
> Ich danke euch
|
|
|
|