www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive MengenlehreRusselsche Antinomie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Naive Mengenlehre" - Russelsche Antinomie
Russelsche Antinomie < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Russelsche Antinomie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:24 So 26.10.2008
Autor: Fuchsschwanz

Hallo!

Habe eine Fragezur Russelschen Antinomie:

Warum frage ich mich, ob M ,die die Menge aller Mengen enthält, die sich selbst nicht enthalten; überhaupt zu diesen Mengen gehören?

Wrum kann diese Antinomie nicht auftreten,wenn ích eine Teilmenge der natürlichen Zahlen betrachte?

Danke

        
Bezug
Russelsche Antinomie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:01 So 26.10.2008
Autor: Fuchsschwanz

Habe versucht mir meine erste Frage an folgendem Beispiel zu veranschaulichen, wäre nett wenn ihr euch das mal anguckt und mir sagt,ob man das so machen kann....


Also ich habe die Mengen
M1={1,3} und M2={2,4}, beide Mengen enthalten sich nicht selbst, gehören also in M.

M sieht dann folgendermaßen aus:
M={M1,M2}={{1,3},{2,4}} M enthält sich also nun nicht selbst,müsste laut Defintion aber so aussehen:
M={M1,M2,M}={{1,3},{2,4},{{1,3},{2,4}}}. Dies ist ein Widerspruch, da M sich nicht enthalten soll, dies aber laut Defintion tut.
Giltnun der obige Fall, also dass M sich selbst enthält,müsste die erste Menge gelten,was wiederum ein Widerspruch ist, da M sich ja eigentlich selsbt enthält.

Richtig?

Nur für Frage zwei hab ich leider noch nix....

Lg

Bezug
                
Bezug
Russelsche Antinomie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Di 28.10.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Russelsche Antinomie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Di 28.10.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]