STFT als Funktion von Spektren < Signaltheorie < Ingenieurwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:21 Fr 22.01.2016 | Autor: | scoubina |
Aufgabe | Gegeben sei die Kurzzeitfouriertransformation: [mm] \hat{x_{h}} [/mm] (t,f) = [mm] \int_{\infty }^{-\infty } x(\tau) h(\tau-t) e^{-2\pi if\tau }d\tau [/mm]
Nun soll ich diese als Funktion der Spektren [mm] \hat{x}(f) [/mm] und [mm] \hat{h}(f) [/mm] angeben. |
Leider bin ich bei dieser Frage ein bisschen überfordert. Ich weiss nicht genau, wie ich sie angeben soll. Irgendwie verwirrt mich das [mm] e^{-2\pi if\tau }. [/mm] Weil ohne das würde es ein bisschen wie eine Faltung aussehen. Dann wäre [mm] x(\tau) h(\tau-t) [/mm] doch das gleiche wie [mm] \hat{x}(f) [/mm] "gefaltet" [mm] \hat{h}(f). [/mm] Oder bin ich total falsch?
Vielen Dank für Eure Hilfe!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:12 Fr 22.01.2016 | Autor: | Infinit |
Hallo scoubina,
ähnliches ist leider nicht das gleiche, die Argumente sind vertauscht.
Versuche zunächst einmal mit Hilfe des Verschiebungssatzes das Spektrum der Fensterfunktion zu bestimmen. Dann kommt die Parsevalsche Gleichung ins Spiel, die das Spektrum des Fensters mit dem Spektrum der zu analysierenden Funktion verknüpft. Das Ganze ist dann ein Ausdruck mit einem Integral im Frequenzbereich, dessen Integranden aus der Fouriertransformierten des Signals und der Fouriertransformierten des Fensters besteht, wenn auch mit einem um [mm] 2 \pi f [/mm] verschobenen Argument. Die Fensterung im Zeitbereich führt zu einer Fensterung im Frequenzbereich, das soll man bei dieser Übung wohl erkennen.
Viele Grüße,
Infinit
|
|
|
|