www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Sätzlirechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Sätzlirechnung
Sätzlirechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sätzlirechnung: bitte Prüfen
Status: (Frage) beantwortet Status 
Datum: 23:37 Di 20.06.2006
Autor: BeniMuller

Aufgabe
Von zwei Orten, deren Entfernung [mm]13.5 \ km[/mm] beträgt, gehen zwei Freunde A und B einander entgegen und treffen sich nach [mm]\bruch{5}{4}[/mm] Stunden. A legt pro Minute [mm] 4 \ m[/mm] mehr zurück als B. Welchen Weg legt jeder in der Minute zurück ?

***nix rumgepostet***

Wenn A pro Minute [mm] 4 m [/mm] mehr zurücklegt, legt er pro Stunde
[mm] 60 \ * 4 m \ = \ 240 m \ = \ 0.24 km[/mm]
mehr zurück als B.

Geschwindigkeit von B:
[mm] V_{B} \ = \ x \ \bruch{km}{h}[/mm]

Geschwindigkeit von A:
[mm] V_{A} \ = \ (x \ + \ 0.240) \ \bruch{km}{h}[/mm]

generell
[mm]V \ = \ \bruch{s}{t}[/mm]

mit
[mm]V \ = \ Geschwindigkeit[/mm]
[mm]s \ = \ Strecke[/mm]
[mm]t \ = \ Zeit[/mm]

[mm]s_{A} \ = \ t \ * \ V_{A} \ = \ 1.25 \ h \ * (x \ + \ 0.24) \ \bruch{km}{h} [/mm]

[mm]s_{B} \ = \ t \ * \ V_{A} \ = \ 1.25 \ h \ * (x ) \ \bruch{km}{h} [/mm]

Die beiden Strecken ergänzen sich zur Distanz zwischen den beiden Orten:

[mm]s_{A} \ + s_{B} \ = \ 13.5 \ \bruch{km}{h}[/mm]

Daraus lässt sich folgende Gleichung bilden:

[mm] \ 1.25 \ h \ * (x \ + \ 0.24) \ \bruch{km}{h} \ + \ 1.25 \ h \ * (x ) \ \bruch{km}{h} \ = \ 13.5 \ \bruch{km}{h} [/mm]

Dies ergibt umgeformt:
[mm] 1.25 \ * \ (2 \ x + 0.24 \ km \ ) \ = \ 13.5 \ km [/mm]
[mm] x \ = \ 5.28 \ km[/mm]

[mm] V_{B} \ = \ 5.28 \ \bruch{km}{h}[/mm]
[mm] V_{A} \ = \ (5.28 \ + \ 0.24) \ \bruch{km}{h} \ = \ 5.52 \ \bruch{km}{h} [/mm]

Kontrolle 1

[mm]s_{A} \ = \ 1.25 \ h \ * 5.52 \ \bruch{km}{h} \ = \ 6.9 \ km [/mm]
[mm]s_{B} \ = \ 1.25 \ h \ * 5.28 \ \bruch{km}{h} \ = \ 6.6 \ km [/mm]

und damit
[mm] s_{A} \ + s_{B} \ = 6.9 \ km \ + \ 6.6 \ km \ = \ 13.5 \ km [/mm]

Umrechnung der Geschwindigkeiten in Meter pro Minute:

[mm] V_{A} \ = \bruch{5.52 \ km}{h} \ = \ \bruch{5520 \ m}{60 \ min} \ = \ 92 \ \bruch{m}{min} [/mm]

[mm] V_{B} \ = \bruch{5.28 \ km}{h} \ = \ \bruch{5280 \ m}{60 \ min} \ = \ 88 \ \bruch{m}{min} [/mm]

Kontrolle 2

[mm] 92 \ m \ - 88 \ m \ = \ 4 \ m[/mm]


A läuft mit [mm] 92 \ \bruch{m}{min} [/mm] wärend B nur [mm] 88 \ \bruch{m}{min}[/mm]  schafft.


Kommentar: Ursprünglich hatte ich eine Unstimmiigkeit bei dieser Rechnung, die mir aber beim Formulieren für den MatheRaum klar geworden ist. Da ich nun aber schon alles reingetippt habe, darf es auch einer gerne prüfen.

Aus einer tropischen Nacht in Zürich grüsst


        
Bezug
Sätzlirechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:41 Di 20.06.2006
Autor: M.Rex


> Von zwei Orten, deren Entfernung [mm]13.5 \ km[/mm] beträgt, gehen
> zwei Freunde A und B einander entgegen und treffen sich
> nach [mm]\bruch{5}{4}[/mm] Stunden. A legt pro Minute [mm]4 \ m[/mm] mehr
> zurück als B. Welchen Weg legt jeder in der Minute zurück
> ?
>  ***nix rumgepostet***
>  
> Wenn A pro Minute [mm]4 m[/mm] mehr zurücklegt, legt er pro Stunde
>  [mm]60 \ * 4 m \ = \ 240 m \ = \ 0.24 km[/mm]
>  mehr zurück als B.
>  
> Geschwindigkeit von B:
>  [mm]V_{B} \ = \ x \ \bruch{km}{h}[/mm]
>  
> Geschwindigkeit von A:
>  [mm]V_{A} \ = \ (x \ + \ 0.240) \ \bruch{km}{h}[/mm]
>  
> generell
>  [mm]V \ = \ \bruch{s}{t}[/mm]
>  
> mit
> [mm]V \ = \ Geschwindigkeit[/mm]
>  [mm]s \ = \ Strecke[/mm]
>  [mm]t \ = \ Zeit[/mm]
>  
> [mm]s_{A} \ = \ t \ * \ V_{A} \ = \ 1.25 \ h \ * (x \ + \ 0.24) \ \bruch{km}{h}[/mm]
>  
> [mm]s_{B} \ = \ t \ * \ V_{A} \ = \ 1.25 \ h \ * (x ) \ \bruch{km}{h}[/mm]
>  
> Die beiden Strecken ergänzen sich zur Distanz zwischen den
> beiden Orten:
>  
> [mm]s_{A} \ + s_{B} \ = \ 13.5 \ \bruch{km}{h}[/mm]
>  
> Daraus lässt sich folgende Gleichung bilden:
>  
> [mm]\ 1.25 \ h \ * (x \ + \ 0.24) \ \bruch{km}{h} \ + \ 1.25 \ h \ * (x ) \ \bruch{km}{h} \ = \ 13.5 \ \bruch{km}{h}[/mm]
>  
> Dies ergibt umgeformt:
>  [mm]1.25 \ * \ (2 \ x + 0.24 \ km \ ) \ = \ 13.5 \ km[/mm]
>  [mm]x \ = \ 5.28 \ km[/mm]
>  
> [mm]V_{B} \ = \ 5.28 \ \bruch{km}{h}[/mm]
>  [mm]V_{A} \ = \ (5.28 \ + \ 0.24) \ \bruch{km}{h} \ = \ 5.52 \ \bruch{km}{h}[/mm]
>  
> Kontrolle 1
>  
> [mm]s_{A} \ = \ 1.25 \ h \ * 5.52 \ \bruch{km}{h} \ = \ 6.9 \ km [/mm]
>  
> [mm]s_{B} \ = \ 1.25 \ h \ * 5.28 \ \bruch{km}{h} \ = \ 6.6 \ km [/mm]
>  
> und damit
> [mm]s_{A} \ + s_{B} \ = 6.9 \ km \ + \ 6.6 \ km \ = \ 13.5 \ km [/mm]
>  
> Umrechnung der Geschwindigkeiten in Meter pro Minute:
>  
> [mm]V_{A} \ = \bruch{5.52 \ km}{h} \ = \ \bruch{5520 \ m}{60 \ min} \ = \ 92 \ \bruch{m}{min}[/mm]
>  
> [mm]V_{B} \ = \bruch{5.28 \ km}{h} \ = \ \bruch{5280 \ m}{60 \ min} \ = \ 88 \ \bruch{m}{min}[/mm]
>  
> Kontrolle 2
>  
> [mm]92 \ m \ - 88 \ m \ = \ 4 \ m[/mm]
>  
>
> A läuft mit [mm]92 \ \bruch{m}{min}[/mm] wärend B nur [mm]88 \ \bruch{m}{min}[/mm]
>  schafft.
>
>
> Kommentar: Ursprünglich hatte ich eine Unstimmiigkeit bei
> dieser Rechnung, die mir aber beim Formulieren für den
> MatheRaum klar geworden ist. Da ich nun aber schon alles
> reingetippt habe, darf es auch einer gerne prüfen.
>  
> Aus einer tropischen Nacht in Zürich grüsst
>  

Passt alles wunderbar.

Aus eine ebenso tropisceh Bielefelder Nacht (kommt hier selten vor)

Marius

Bezug
                
Bezug
Sätzlirechnung: Besten Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:46 Di 20.06.2006
Autor: BeniMuller

Besten Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]