www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSattelpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Sattelpunkt
Sattelpunkt < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sattelpunkt: Frage
Status: (Frage) beantwortet Status 
Datum: 12:28 Mo 28.03.2005
Autor: VB-Hacker

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hi

ich habe folgendes problem.

ich weiß, dass  f '(x)=0 und f ''(x0) = 0 und f '''(x0) <> 0 für einen sattelpunkt gelten muss. was liegt aber vor, wenn f '''(x0) = 0 ist?

danke

        
Bezug
Sattelpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Mo 28.03.2005
Autor: dark-sea

Ich dachte, es sei so:

wenn f'(x)=0, f''(x)=0 und f'''(x)=0 ist, dann spricht man von einem Sattelpunkt und

wenn f'(x)=0, f''(x)=0 und f'''(x) [mm] \not=0 [/mm] ist, dann spricht man von einem Wendepunkt?!

Bezug
                
Bezug
Sattelpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Mo 28.03.2005
Autor: Zwerglein

Hi, dark-sea,

> Ich dachte, es sei so:
> wenn f'(x)=0, f''(x)=0 und f'''(x)=0 ist, dann spricht man
> von einem Sattelpunkt und
> wenn f'(x)=0, f''(x)=0 und f'''(x) [mm]\not=0[/mm] ist, dann spricht
> man von einem Wendepunkt?!

Wo Du das auch immer her hast: ES IST FALSCH!
Richtig ist:
Ein SATTELPUNKT (=TERRASSENPUNKT) ist ein spezieller WENDEPUNKT,
nämlich ein Wendepunkt, in dem der Graph der Funktion eine waagrechte Tangente aufweist.

Somit gilt:

Falls [mm] f''(x_{0}) [/mm] = 0 und [mm] f'''(x_{0}) \not= [/mm] 0 ist, so liegt ein Wendepunkt vor.

Falls ZUSÄTZLICH (!!) noch [mm] f'(x_{0}) [/mm] = 0 ist, liegt sogar ein Terrassenpunkt vor.

(FORMELSAMMLUNG!)

Bezug
                        
Bezug
Sattelpunkt: erledigt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:02 Mo 28.03.2005
Autor: VB-Hacker

danke das hat mir mehr geholfen als du dir denken kannst :-)

Bezug
        
Bezug
Sattelpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Mo 28.03.2005
Autor: Zwerglein

Hi, VB-Hacker,

dann kann's trotzdem ein Sattelpunkt (Terrassenpunkt) sein, vielleicht aber auch ein Extrempunkt.

Beispiel: f(x) = [mm] x^{4} [/mm]
f'(x) = [mm] 4x^{3} [/mm]
f''(x) = [mm] 12x^{2} [/mm]
f'''(x) = 24x
[mm] f^{IV}(x) [/mm] = 24.
Wie Du siehst, gilt für x=0 genau das, was Du in Deiner Frage vorgeschlagen hast, nämlich:
f'(0) = 0;  f''(0) = 0; aber auch f'''(0) = 0.
Damit "versagt" zunächst mal das übliche Kriterium.
Dann nimmst Du [mm] f^{IV} [/mm] und stellts fest:  [mm] f^{IV}(0) [/mm] > 0.
Unsere Funktion hat also einen Tiefpunkt T(0;0)

Wenn Du dasselbe mit f(x) = [mm] x^{5} [/mm] machst, gilt sogar:
f'(0) = f''(0) = f''(0) = [mm] f^{IV}(0) [/mm] = 0, aber: [mm] f^{V}(0) \not= [/mm] 0. Diesmal liegt also für x=0 ein Terrassenpunkt vor.

Also: Die Entscheidung, ob Extrempunkt oder Terrassenpunkt, ergibt sich aus der nächsten Ableitung, die nicht =0 ist: Ist diese von gerader Ornung, liegt ein EP vor, ist sie von ungerader Ordnung, ein Terrassenpunkt.

Alternative:
Die Vielfachheit der "Nullstelle" von f''(x) (also der 2. Ableitung !!!!!) kann Dir darüber ebenfalls Aufschluss geben:
Ist die Nullstelle von ungerader Ordnung, ist's ein Wendepunkt, ist sie von gerader Ordnung, kein Wendepunkt. (Gilt also auch für "einfache" Wendepunkte, nicht nur bei Terrassenpunkten!)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]