www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenSatz der Impliziten Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Satz der Impliziten Funktionen
Satz der Impliziten Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz der Impliziten Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:01 Mo 02.06.2008
Autor: MattiJo

Aufgabe
Es sei die Funktion

f: [mm] \IR^{2} \to \IR, [/mm] f(x, y) := x - [mm] y^{3} [/mm]

gegeben.
Im Punkt [mm] (x_{0}, y_{0}) [/mm] = (0, 0) ist [mm] f(x_{0}, y_{0}) [/mm] = 0.
Zeigen Sie, dass trotz [mm] f_{y}(x_{0}, y_{0}) [/mm] = 0 eine eindeutige Auflösung y = g(x) der Gleichung f(x, y) = 0 existiert, die auf ganz [mm] \IR [/mm] definiert ist.
Ist dies ein Widerspruch zum Satz über Implizite Funktionen?

Hallo,

weiß vielleicht jemand, wie man diesen Beweis führen könnte?
Der Satz sagt doch, dass die erste Partialableitung nach y nicht Null sein darf.
Aber jetzt das?

Viele Grüße und schonmal Dank für alle Mühen ;)

matti

        
Bezug
Satz der Impliziten Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:40 Mo 02.06.2008
Autor: Merle23

Ja stell' doch einfach f(x,y)=0 nach y um.
Der Satz über implizite Funktionen ist keine gdw Aussage - er gilt nur in einer Richtung.

Bezug
                
Bezug
Satz der Impliziten Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:47 Mo 02.06.2008
Autor: MattiJo

hey, danke für die antwort zu dieser stunde!
kannst du mir noch schnell schreiben was "gdw" heißt und warum er nur in einer richtung geht (nur ganz kurz ;) )
danke nochmal, grüße matti

Bezug
                        
Bezug
Satz der Impliziten Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:50 Mo 02.06.2008
Autor: Merle23

Gdw steht für "genau dann, wenn", also dieses Zeichen hier: [mm] \gdw. [/mm]

Der Satz sagt nur, dass wenn die Ableitung da nicht Null wird, dann gibt es eine Auflösung. Aber er sagt nichts über die andere Richtung, also darüber was passiert, wenn eine Auflösung existiert. Dann kann trotzdem die komische Ableitung da Null werden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]