www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenSatz über ähnliche Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Satz über ähnliche Matrizen
Satz über ähnliche Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz über ähnliche Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:54 Fr 07.06.2013
Autor: RoughNeck

Hallo.
Ich habe heute etwas über ähnliche Matrizen gelesen:
"Komplexe ähnliche Matrizen haben das selbe Minimalpolynom".

Jetzt frage ich mich, wieso dies nur über [mm] \IC [/mm] gilt. Dazu habe ich jetzt länger versucht ein Gegenbeispiel zu finden, aber dies gelingt mir nicht. Leider weiß ich nicht mehr wo dies stand, aber ich fange langsam an die Richtigkeit dieser Aussage anzuzweifeln.

Ich würde mich über eine Antwort freuen.
Lieben Gruß.

        
Bezug
Satz über ähnliche Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:32 Fr 07.06.2013
Autor: Marcel

Hallo,

> Hallo.
> Ich habe heute etwas über ähnliche Matrizen gelesen:
>  "Komplexe ähnliche Matrizen haben das selbe
> Minimalpolynom".
>
> Jetzt frage ich mich, wieso dies nur über [mm]\IC[/mm] gilt.

da steht doch ganz klar:
Sind Matrizen mit komplexen Einträgen ähnlich (das ist die Voraussetzung!),
dann folgt, dass sie das selbe Minimalpolynom haben.

Da steht an keiner stelle, dass, wenn die Matrizen ähnlich sind
und das selbe Minimalpolynom haben, sie auch komplexe Einträge haben
müssen. Das gilt auch nicht:

    []http://de.wikipedia.org/wiki/%C3%84hnlichkeit_%28Matrix%29

Du kannst eine Aussage $A [mm] \Rightarrow [/mm] B$ nicht zu "nur wenn [mm] $A\,,$ [/mm] dann gilt $B$"
umformulieren. Letzteres bedeutet: [mm] $\neg [/mm] A [mm] \Rightarrow \neg B\,,$ [/mm] also (Kontraposition)
$B [mm] \Rightarrow A\,.$ [/mm]
(Wobei Du das auch nicht ganz genau so machst, bei Dir ist's eher so, dass
Du aus
$$(A [mm] \wedge [/mm] B) [mm] \Rightarrow [/mm] C$$
sowas wie $(C [mm] \wedge [/mm] B) [mm] \Rightarrow [/mm] A$ machen willst. Erinnere Dich mal, dass $A [mm] \Rightarrow [/mm] B$ nichts
anderes als [mm] $\neg [/mm] A [mm] \vee [/mm] B$ bedeutet; dann ist klar, dass oben nichts logisch
Gleichwertiges steht!)

Gruß,
  Marcel

Bezug
                
Bezug
Satz über ähnliche Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:48 Fr 07.06.2013
Autor: RoughNeck

Oh man oh man. Entschuldigung, dass ich mit einer derartigen Frage ankam.
Aber vielen vielen dank!


Edit. Sollte keine neue Frage sein. Nochmal Sorry:(

Bezug
                        
Bezug
Satz über ähnliche Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:42 Fr 07.06.2013
Autor: Marcel

Tachtach,

> Oh man oh man. Entschuldigung, dass ich mit einer
> derartigen Frage ankam.

Quatsch. Wozu entschuldigen? Sowas passiert halt mal in Ungedanken.
Wenn's Dir jetzt aber schon fast peinlich ist, wird Dir das nicht mehr
passieren. ;-)

>  Aber vielen vielen dank!

Gerne!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]